Chlorocatechol-functionalized gelatin nanoparticles as a hemostatic agent with antimicrobial properties.

Acta Biomater

Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States. Electronic address:

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hemorrhage is one of the leading preventable causes of death associated with trauma, which is often complicated by wound infection. Current hemostatic materials are not ideal and lack antimicrobial properties needed for infection prevention. Here, we tested the feasibility for 6-chlorodopamine-functionalized gelatin (GDC) nanoparticles to function as a hemostatic powder with strong tissue adhesion and antibacterial properties. 6-Chlorodopamine contains a catechol sidechain that is further modified with an electron withdrawing chlorine atom, and provides strong tissue adhesion and antimicrobial property. These gelatin nanoparticles are not covalently crosslinked, which enablde them to rapidly transition into an adhesive film when hydrated with an aqueous solution or blood. The chlorination of catechol significantly increased structural integrity, interfacial bonding to tissue surface, and the rate of film formation. Additionally, GDC nanoparticles are noncytotoxic and nonhemolytic, and effectively killed Gram-positive (Staphylococcus epidermidis, Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. Finally, GDC nanoparticles achieved significantly faster hemostasis and reduced blood loss when compared to a commercial fibrin glue, Tisseel, in tail transection and liver hemorrhage models performed in mice. These findings highlight the potential of GDC nanoparticle as a versatile, multifunctional hemostatic agent capable of both rapid hemorrhage control and infection prevention. STATEMENT OF SIGNIFICANCE: Existing hemostatic agents often lack effective antimicrobial properties and may not be suited for application in a prehospital setting. This work evaluated a multifunctional, hemostatic nanoparticle that addresses key challenges in hemorrhage control and infection prevention, through a simple, bioinspired formulation. Gelatin nanoparticles were functionalized with chlorocatechol (GDC) that can rapidly transition into adhesive films when hydrated with blood. Chlorocatechol imparted the nanoparticles with strong tissue adhesion, film integrity, and antimicrobial property. In mouse hemorrhage models, GDC significantly reduced blood loss and bleeding time when compared to a commercial fibrin sealant. This powder-form material requires no mixing or specialized equipment to deploy, which makes it potentially suitable for application in a prehospital setting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12368770PMC
http://dx.doi.org/10.1016/j.actbio.2025.08.020DOI Listing

Publication Analysis

Top Keywords

gelatin nanoparticles
12
antimicrobial properties
12
infection prevention
12
gdc nanoparticles
12
strong tissue
12
tissue adhesion
12
hemostatic agent
8
antimicrobial property
8
rapidly transition
8
transition adhesive
8

Similar Publications

Organotypic 3D tissue models require precise electrophysiological interfaces to study function and disease. Multi-electrode arrays (MEAs) are essential for recording and stimulation, yet conventional fabrication methods are costly and time-intensive. This study demonstrates aerosol jet printing (AJP) of gold nanoparticles onto flexible polyimide substrates to produce fully gold, biocompatible MEAs for rapid customization of MEAs.

View Article and Find Full Text PDF

A Starch Gum with a Multi-Cascade Enzymatic Reaction Targeting Dental Caries Biofilm Eradication and Enamel Regeneration.

Adv Healthc Mater

September 2025

Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China.

The progression of dental caries is exacerbated by the presence of bacterial biofilms on carious enamel surfaces, which inhibit remineralization and exacerbate caries. Existing caries treatment protocols are often complex and costly. To simultaneously eradicate caries-associated biofilms and repair demineralized enamel, this study develope a starch-based gum containing calcium carbonate nanoparticles loaded with L-arginine (CaCO@L-Arg) and glucose oxidase (GOx).

View Article and Find Full Text PDF

Skin wound healing is a complex physiological process that requires coordinated action of various tissue cells. Several factors, such as infection and excessive inflammation, can prolong the healing process and, in severe cases, may lead to chronic wounds, threatening people's lives and health. Therefore, effective treatment strategies are required to accelerate the healing process and improve the quality of healing.

View Article and Find Full Text PDF

Impact of scaffold material choice on osteosarcoma phenotype and drug responses in 3D.

Acta Biomater

August 2025

Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA. Electronic address:

Biomaterials-based 3D models have emerged as new cancer research tools for studying osteosarcoma (OS). However, the impact of scaffold material choice on OS phenotype and drug responses in 3D remains largely unknown, as previous studies used different biomaterials as scaffolds without direct comparison. In this study, we systematically compared four biomaterials: Gelatin methacrylate (GelMA), Gelatin microribbons (Gel µRB), Collagen I hydrogel (Col1), and Poly(DL-lactide-co-glycolide) (PLGA).

View Article and Find Full Text PDF

Anti-inflammatory and osteogenic nanofibrous scaffolds of bioactive glass/carboxymethyl chitosan-reinforced PCL short fibers for alveolar bone regeneration.

Int J Biol Macromol

August 2025

Department of Periodontal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research C

Repairing critical alveolar bone defects in inflammatory microenvironments is challenging. To address this, dual-functional nanofibrous scaffolds with anti-inflammatory and osteogenic properties were developed. These scaffolds incorporate polycaprolactone (PCL) short fibers and mesoporous bioactive glass nanoparticles (MBGNs), fabricated through electrospinning and sol-gel processes, respectively.

View Article and Find Full Text PDF