Dual-Targeting of PD-L1 and Integrin αβ for Preclinical PET Imaging of Cancer.

Chembiochem

Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Beijing, 100050, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The dual-targeting strategy has demonstrated advantages in enhancing tumor uptake, improving imaging contrast, and ultimately increasing tumor detection rate. PD-L1 is overexpressed on multiple tumor cells and regulated by αβ-integrin. In this study, a dual-targeting radiotracer, [64Cu]-PEG-RGD-TPP-1, is developedfor PET/CT imaging of both PD-L1 and αβ-integrin simultaneously, achieving high contrast, enhanced tumor uptake, and prolonged tumor retention time. [Cu]-PEG-RGD-TPP-1 comprises the peptide TPP-1 and cyclic peptide c(RGDyC), linked via a PEG linker. The dual-targeting molecule had a moderate serum stability (≈60%) in vivo after 1 hr. This dual-targeting radiotracer is evaluated and compared with the single-targeting radiotracers [Cu]-PEG-TPP-1 and [Cu]-TPP-1. PET imaging and ex vivo biodistribution studies show that [Cu]-PEG-RGD-TPP-1 exhibits higher tumor uptake than its single-targeting counterparts. Moreover, the dual-targeting radiotracer demonstrated potential for ultrasmall tumor imaging and could be combined with X-ray irradiation to further enhance PET imaging contrast, thereby improving tumor-targeting efficiency. These findings suggest that [Cu]-PEG-RGD-TPP-1 is a promising noninvasive tracer for detecting tumors expressing PD-L1 and/or integrin aβ, with the prospect of clinical implementation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.202500508DOI Listing

Publication Analysis

Top Keywords

pet imaging
12
tumor uptake
12
dual-targeting radiotracer
12
imaging contrast
8
tumor
7
dual-targeting
6
imaging
6
dual-targeting pd-l1
4
pd-l1 integrin
4
integrin αβ
4

Similar Publications

Tissue factor (TF) has emerged as a promising target for the diagnosis and treatment of hepatocellular carcinoma (HCC). However, there is limited data available on TF-related PET imaging for longitudinal monitoring of the pathophysiological changes during HCC formation. Herein, we aimed to explore the TF-expression feature and compare a novel TF-targeted PET probe with F-FDG through longitudinal imaging in diethylnitrosamine (DEN)-induced rat HCC.

View Article and Find Full Text PDF

Purpose: In children with Langerhans Cell Histiocytosis (LCH), FDG-PET/CT is used for staging and response assessment. Whole-body MRI (WB-MRI) can serve as an ionizing radiation-free alternative for repeated whole-body imaging. The aim of this study was to compare WB-MRI with FDG-PET/CT for staging and response assessment in pediatric LCH.

View Article and Find Full Text PDF

Importance: It is unclear whether the duration of amyloid-β (Aβ) pathology is associated with neurodegeneration and whether this depends on the presence of tau.

Objective: To examine the association of longitudinal atrophy with Aβ positron emission tomography (PET)-positivity (Aβ+) and the estimated duration of Aβ+ (Aβ+ duration), controlling for tau-positivity.

Design, Setting, And Participants: Data for this longitudinal cohort study were drawn from the Wisconsin Registry for Alzheimer Prevention and the Wisconsin Alzheimer Disease Research Center Clinical Core Study.

View Article and Find Full Text PDF

Synthesis, preclinical evaluation and clinical application of a novel heterodimeric tracer Ga-pentixafor-c(RGDfK) for PET-CT imaging.

Eur J Nucl Med Mol Imaging

September 2025

Department of PET-CT/MRI, NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.

Objective: CXCR4 and integrin αβ play important roles in tumor biology and are highly expressed in multiple types of tumors. This study aimed to synthesize, preclinically evaluate, and clinically validate a novel dual-targeted PET imaging probe Ga-pentixafor-c(RGDfK) for its potential in imaging tumors.

Methods: The effects of Ga-pentixafor-c(RGDfK) on cell viability, targeting specificity, and affinity were assessed in the U87MG cells.

View Article and Find Full Text PDF

Purpose: Cardiac noradrenergic denervation visualized by meta-[I]iodobenzylguanidine ([I]MIBG) imaging supports the diagnosis of Parkinson's disease (PD). Recently, meta-[F] fluorobenzylguanidine ([F]MFBG) PET demonstrated favorable imaging characteristics compared with [I]MIBG scintigraphy for neuroendocrine tumors. We assessed [F]MFBG dosimetry and myocardial pharmacokinetics in healthy controls and PD patients.

View Article and Find Full Text PDF