98%
921
2 minutes
20
Objective: Quantitative magnetic resonance imaging (qMRI) has attracted more and more attention in clinical diagnosis and medical sciences due to its capability to non-invasively characterize tissue properties. Nevertheless, most qMRI methods are time-consuming and sensitive to motion, making them inadequate for quantifying organs with physiological movement. In this context, single-shot multiple overlapping-echo detachment (MOLED) imaging technique has been presented, but its acquisition efficiency and image quality are limited when the field of view (FOV) is smaller than the object, especially for abdominal organs and myocardium.
Methods: A novel single-shot reduced FOV qMRI method was developed based on MOLED (termed rFOV-MOLED). This method combines zonal oblique multislice (ZOOM) and outer volume suppression (OVS) techniques to reduce the FOV and suppress signals outside the FOV. A deep neural network was trained using synthetic data generated from Bloch simulations to achieve high-quality T map reconstruction from rFOV-MOLED iamges. Numerical simulation, water phantom and in vivo abdominal and myocardial imaging experiments were performed to evaluate the method. The coefficient of variation and repeatability index were used to evaluate the reproducibility. Multiple statistical analyses were utilized to evaluate the accuracy and significance of the method, including linear regression, Bland-Altman analysis, Wilcoxon signed-rank test, and Mann-Whitney U test, with the p-value significance level of 0.05.
Results: Experimental results show that rFOV-MOLED achieved excellent performance in reducing aliasing signals due to FOV reduction. It provided T maps closely resembling the reference maps. Moreover, it gave finer tissue details than MOLED and was quite repeatable.
Conclusion And Significance: rFOV-MOLED can ultrafast and stably provide accurate T2 maps for myocardium and specific abdominal organs with improved acquisition efficiency and image quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2025.3598911 | DOI Listing |
J Appl Clin Med Phys
September 2025
Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA.
Purpose: Real‑time magnetic resonance-guided radiation therapy (MRgRT) integrates MRI with a linear accelerator (Linac) for gating and adaptive radiotherapy, which requires robust image‑quality assurance over a large field of view (FOV). Specialized phantoms capable of accommodating this extensive FOV are therefore essential. This study compares the performance of four commercial MRI phantoms on a 0.
View Article and Find Full Text PDFRetina
September 2025
Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Boston, MA, USA.
Purpose: To investigate associations among expanded field swept-source optical coherence tomography angiography (SS-OCTA) biomarkers and the development of tractional retinal detachment (TRD) in patients with proliferative diabetic retinopathy (PDR).
Methods: Patients with PDR without TRD at baseline were imaged with SS-OCTA. Quantitative and qualitative OCTA metrics were independently evaluated by two trained graders.
Theor Appl Genet
September 2025
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
The German Federal Ex Situ Genebank for Agricultural and Horticultural Crops (IPK) harbours over 3000 pea plant genetic resources (PGRs), backed up by corresponding information across 16 key agronomic and economical traits. The unbalanced structure and inconsistent format of this historical data has precluded effective leverage of genebank accessions, despite the opportunities contained in its genetic diversity. Therefore, a three-step statistical approach founded in linear mixed models was implemented to enable a rigorous and targeted data curation.
View Article and Find Full Text PDFCureus
August 2025
Spinal Surgery, Kameda Medical Center, Chiba, JPN.
For lumbar spinal canal stenosis, endoscopic spine surgery typically employs a unilateral approach. While this approach has the advantage of early access to the lamina, it risks damage to the facet joint on the entry side. Additionally, decompression of the ipsilateral lateral recess can be challenging, sometimes resulting in inadequate decompression laterally, leading to incomplete symptom relief.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
September 2025
Radiance fields represented by 3D Gaussians excel at synthesizing novel views, offering both high training efficiency and fast rendering. However, with sparse input views, the lack of multi-view consistency constraints results in poorly initialized Gaussians and unreliable heuristics for optimization, leading to suboptimal performance. Existing methods often incorporate depth priors from dense estimation networks but overlook the inherent multi-view consistency in input images.
View Article and Find Full Text PDF