98%
921
2 minutes
20
Impact in Continuous Flow Heated Mechanochemistry (ICHEM) technology was used for the first biphasic continuous flow esterification of choline chloride-based deep eutectic solvents (DESs) with nonmiscible acetic, hexanoic, and octanoic anhydrides, resulting in the synthesis of novel hydrotropic DESs. The reaction was first optimized in batch using acetic anhydride, and then scaled up to continuous flow in an 80 mL WAB Research Lab ICHEM reactor, achieving 90-95% yields at lab scales of 50-100 g. The physicochemical properties of the three new DESs were analyzed, revealing that esterification via the ICHEM process had minimal impact on these properties compared to the conventional batch method. Furthermore, the potential of these new hydrotropic DESs as anticorrosive agents was evaluated, demonstrating their effectiveness as corrosion inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202501702 | DOI Listing |
Front Allergy
August 2025
Department of Surgery, University of Auckland, Auckland, New Zealand.
Allergic rhinitis (AR) and chronic rhinosinusitis (CRS) are common respiratory conditions that significantly impact patient health and contribute to substantial healthcare burdens. While conventional treatments offer symptom relief, many patients continue to experience persistent symptoms, side effects, or resistance to standard therapies. This highlights the growing need for novel, non-invasive, and sustainable therapeutic strategies to manage chronic airway inflammation.
View Article and Find Full Text PDFFront Oncol
August 2025
Department Hematopathology, Shenzhen Hospital of Southern Medical University, Shenzhen, China.
Background: Mixed-phenotype acute leukemia (MPAL) is a rare acute leukemia for which data are currently not available to guide therapy. It has a poor outcome, particularly in elderly patients.
Case Presentation: We report the successful use of venetoclax/azacitidine as treatment for a treatment-naive elderly patient with early T-cell precursor (ETP)/myeloid MPAL.
RSC Adv
September 2025
Department of Chemical Engineering and Green Technology, Institute of Chemical Technology (ICT) Mumbai Maharashtra 400019 India
The sustainable synthesis of bio-based monomers from renewable biomass intermediates is a central goal in green chemistry and biorefinery innovation. This study introduces a synergistic catalytic-enzymatic strategy for the efficient and eco-friendly oxidation of 5-hydroxymethylfurfural (5-HMF) into 2,5-furandicarboxylic acid (FDCA), a key monomer for next-generation biodegradable plastics. The catalytic phase employed non-noble metal catalysts, MnO and Co-Mn supported on activated carbon (Co-Mn/AC), under mild batch reaction conditions at 90 °C.
View Article and Find Full Text PDFBeilstein J Org Chem
August 2025
China Construction Industrial & Energy Engineering Group Huanghe Construction Co., Ltd., 7 Yandong Xinlu, Lixia District, Jinan 250000, P. R. China.
Flow chemistry technology has demonstrated significant potential in advancing the green transformation of the chemical industry while enhancing inherent process safety. Safety, cost-effectiveness, and operational efficiency serve as pivotal drivers for advancing flow chemistry in nitration processes. This review provides a comprehensive analysis of the continuous-flow nitration technology - a process historically recognized as one of the most hazardous industrial operations - focusing on its technological advancements in process design, reaction kinetics characterization, and practical implementation over the past decade.
View Article and Find Full Text PDFChemSusChem
September 2025
Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany.
The palladium-catalyzed Suzuki-Miyaura cross coupling reaction to forge carbon-carbon bonds fundamentally changes the practice of organic synthesis. Herein an isolated palladium catalyst supported on polymeric carbon nitride (Pd/PCN) for efficient cross coupling of bromobenzene and phenylboronic acid at room temperature is reported. It is demonstrated that the Pd/PCN catalyst with a 2 wt% Pd loading achieves the highest mole-specific activity.
View Article and Find Full Text PDF