Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Systemic lupus erythematosus (SLE) is frequently associated with secondary osteoporosis (OP), substantially compromising patients' quality of life. Although Lang-chuang-ding (LCD), a traditional Chinese medicine formulation, has demonstrated efficacy in suppressing SLE progression, its therapeutic potential for SLE-associated OP remains uninvestigated. This study investigated the therapeutic effects and underlying pharmacological mechanisms of LCD on SLE-associated OP through experimental validation using MRL mouse model in conjunction with network pharmacology analysis. Our findings demonstrated that LCD significantly attenuated bone loss in the distal femur by improving bone morphometric parameters, including bone mineral density (BMD), trabecular number (Tb.N), and trabecular bone separation (Tb.Sp), while simultaneously suppressing osteoclast activity and promoting osteogenesis. Network pharmacological analysis identified 63 overlapping targets among LCD components, SLE-related genes, and OP-associated targets, with inflammatory mediators TNF-α, IL-6, and IL-1β emerging as pivotal hub targets. KEGG enrichment analysis revealed significant NF-κB pathway enrichment among the core therapeutic targets. Experimental validation demonstrated that LCD effectively suppressed inflammatory responses by markedly reducing pro-inflammatory cytokines IL-1β, TNF-α, and IL-6 expression while simultaneously inhibiting NF-κB pathway activation through downregulation of p-IκB, P65, and p-P65 in the distal femur. Collectively, these findings demonstrate that LCD effectively ameliorates SLE-associated OP through modulation of inflammatory cytokine networks and the NF-κB signaling pathway, establishing its therapeutic potential as a mechanism-based intervention for SLE-associated OP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343237 | PMC |
http://dx.doi.org/10.3389/fendo.2025.1639261 | DOI Listing |