Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Sjögren's syndrome (SS) is an autoimmune disorder impacting exocrine glands, while peripheral atherosclerosis (PA) demonstrates a close link to inflammation. Despite a notable rise in atherosclerosis risk among SS patients in prior investigations, the precise mechanisms remain elusive.

Methods: A comprehensive analysis was conducted on seven microarray datasets (GSE7451, GSE23117, GSE143153, GSE28829, GSE100927, GSE159677, and GSE40611). The LIMMA package, in conjunction with weighted gene co-expression network analysis (WGCNA), provides a robust method for identifying differentially expressed genes (DEGs) associated with peripheral atherosclerosis (PA) in Sjögren's syndrome (SS). Subsequently, machine learning algorithms and protein-protein interaction (PPI) network analysis were employed to further investigate potential predictive genes. These findings were utilized to construct a nomogram and a receiver operating characteristic (ROC) curve, which assessed the predictive accuracy of these genes in PA patients with SS. Additionally, extensive analyses of immune cell infiltration and single-sample gene set enrichment analysis (ssGSEA) were conducted to elucidate the underlying biological mechanisms.

Results: Using the LIMMA package and WGCNA, 135 DEGs associated with PA in SS were identified. PPI network analysis revealed 17 candidate hub genes. The intersection of gene sets identified by three distinct machine learning algorithms highlighted CCL4, CSF1R, and MX1 as key DEGs. ROC analysis and nomogram construction demonstrated their high predictive accuracy (AUC: 0.971, 95% CI: 0.941-1.000). Analysis of immune cell infiltration showed a significant positive correlation between these hub genes and dysregulated immune cells. Additionally, ssGSEA provided critical biological insights into the progression of PA in SS.

Conclusion: This study systematically identified three promising hub genes (CCL4, CSF1R, and MX1) and developed a nomogram for predicting PA in SS. Analysis of immune cell infiltration demonstrated that dysregulated immune cells significantly contribute to the progression of PA. Additionally, ssGSEA analysis offered important insights into the mechanisms by which SS leads to PA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343227PMC
http://dx.doi.org/10.3389/fgene.2025.1546315DOI Listing

Publication Analysis

Top Keywords

immune cell
16
cell infiltration
16
peripheral atherosclerosis
12
sjögren's syndrome
12
machine learning
12
network analysis
12
hub genes
12
analysis
10
atherosclerosis sjögren's
8
limma package
8

Similar Publications

Macrophage cannibalism: efferocytosis in atherosclerosis.

Curr Opin Lipidol

August 2025

Cardiometabolic Immunity Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute (BDI) and Victorian Heart Institute (VHI), Monash University, Melbourne, Victoria, Australia.

Purpose Of Review: This review explores the evolving understanding of efferocytosis - the clearance of dead or dying cells by phagocytes - in the context of atherosclerosis. It highlights recent discovers in cell death modalities, impaired clearance mechanisms and emerging therapeutic strategies aimed at restoring efferocytosis to stabilize plaques and resolve inflammation.

Recent Findings: Recent studies have expanded the scope of efferocytosis beyond apoptotic cells to include other pro-inflammatory cell death modes, including pyroptosis, necroptosis and ferroptosis, revealing context-dependent clearance efficiency and immunological outcomes.

View Article and Find Full Text PDF

Adenosine A receptors (AARs) have shown promising therapeutic properties despite their controversial role in modulating stroke outcome. However, the temporal evolution of cerebral AARs density after cerebral ischemia and its subsequent neuroinflammatory response have been scarcely explored. In this study, the expression of AARs after transient middle cerebral artery occlusion (MCAO) was evaluated in rats by positron emission tomography (PET) with [C]SCH442416 and immunohistochemistry (IHC).

View Article and Find Full Text PDF

Autoimmune nodopathies: emerging insights and clinical implications.

Curr Opin Neurol

October 2025

Neuromuscular Diseases Unit, Department of Neurology, IR SANT PAU, Hospital de la Santa Creu i Sant Pau, CIBERER, Barcelona, Spain.

Purpose Of Review: Autoimmune nodopathies (AN) are a recognized distinct group of immune-mediated peripheral neuropathies with unique immunopathological features and therapeutic implications. This review synthesizes recent advances in their pathogenesis, diagnosis, and management, which have refined their clinical classification and informed targeted treatment strategies.

Recent Findings: AN are characterized by autoantibodies targeting surface proteins in the nodal-paranodal area (anti-contactin-1, anti-contactin-associated protein 1, anti-neurofascin-155, anti-pan-neurofascin), predominantly of IgG4 subclass.

View Article and Find Full Text PDF

Background: C-C motif chemokine ligand 3 (CCL3) is a crucial chemokine that plays a fundamental role in the immune microenvironment and is closely linked to the development of various cancers. Despite its importance, there is limited research regarding the expression and function of CCL3 in nasopharyngeal carcinoma (NPC). Therefore, this study seeks to examine the expression of CCL3 and assess its clinical significance in NPC using bioinformatics analysis and experiments.

View Article and Find Full Text PDF

Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.

View Article and Find Full Text PDF