98%
921
2 minutes
20
Polyhydroxyalkanoates (PHA) are popular biopolymers due to their potential use as biodegradable thermoplastics. In this study, three aerobic sequencing batch reactors were operated identically except for their temperatures, which were set at 15 °C, 35 °C, and 48 °C. The reactors were subjected to a feast-famine feeding regime, where carbon sources are supplied intermittently, to enrich PHA-accumulating microbial consortia. The biomass was sampled for 16S rRNA gene amplicon sequencing of both DNA (during the enrichment phase) and cDNA (during the enrichment and accumulation phases). All temperatures yielded highly enriched PHA-accumulating consortia. Thermophilic communities were significantly less diverse than those at low or mesophilic temperatures. In particular, was highly adaptable, abundant, and active at all temperatures. Low temperatures resulted in reduced PHA production rates and yields. Analysis of the microbial community revealed a collapse of community diversity during low-temperature PHA accumulation, suggesting that the substrate dosing strategy was unsuccessful at low temperatures. This points to future possibilities for optimizing low-temperature PHA accumulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342040 | PMC |
http://dx.doi.org/10.3389/fsysb.2024.1375472 | DOI Listing |
Phys Rev Lett
August 2025
McMaster University, Department of Physics and Astronomy, Hamilton, Ontario L8S 4M1, Canada.
Magnetic heat capacity measurements of a high-quality single crystal of the dipole-octupole pyrochlore Ce_{2}Hf_{2}O_{7} down to a temperature of T=0.02 K are reported. These show a two-peaked structure, with a Schottky-like peak at T_{1}∼0.
View Article and Find Full Text PDFSci Adv
September 2025
Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
Salicylic acid (SA) is a key defense hormone shaped by temperature. High temperatures suppress, while low temperatures enhance, SA biosynthesis and signaling, thereby influencing plant immunity and temperature resilience. This review synthesizes current understanding of how temperature modulates SA pathways and their cross-talk with other hormones to balance growth and defense.
View Article and Find Full Text PDFPLoS One
September 2025
Comet Research Group, Prescott, Arizona, United States of America.
Shocked quartz grains are an accepted indicator of crater-forming cosmic impact events, which also typically produce amorphous silica along the fractures. Furthermore, previous research has shown that shocked quartz can form when nuclear detonations, asteroids, and comets produce near-surface or "touch-down" airbursts. When cosmic airbursts detonate with enough energy and at sufficiently low altitude, the resultant relatively small, high-velocity fragments may strike Earth's surface with high enough pressures to generate thermal and mechanical shock that can fracture quartz grains and introduce molten silica into the fractures.
View Article and Find Full Text PDFPLoS One
September 2025
Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan.
The Tone River in Japan represents one of the southern limit distributions of chum salmon (Oncorhynchus keta) on the western side of the North Pacific, but the number of adult chum salmon observed here has declined dramatically since 2013 and reached zero in 2024. The factors behind the recent decline of the chum salmon population in the Tone River were investigated by using ocean reanalysis data and a 20-year particle-tracking simulation. Virtual chum salmon fry were released at the mouth of the Tone River in spring each year with six different swimming strategies to evaluate the effects of ocean currents on the population growth rate of salmon.
View Article and Find Full Text PDFSoft Robot
September 2025
The School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, Australia.
Soft robotic systems are promising for diverse space applications due to their embedded compliance, promising locomotion methods, and efficient use of mass and volume. Space environments are harsher and more varied than those on Earth; extreme temperature, pressure, and radiation may impact the performance and robustness of soft robots. Cryogenic temperatures on celestial bodies such as the Moon or Europa pose significant challenges to the flexibility and actuation performance of conventional soft systems.
View Article and Find Full Text PDF