Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Osteochondral defects (OCDs) present significant clinical challenges, necessitating scaffolds that effectively regenerate both cartilage and subchondral bone. We developed a bilayer scaffold using fish collagen extracted from Catla catla skin to overcome the limitations of conventional biomaterials, such as mammalian collagen and synthetic polymers, which often suffer from immunogenic risks, poor bioactivity, or inadequate structural integration. The scaffold is comprised of collagen/fibrin (CC/FIB) for the articular cartilage layer and collagen/sodium citrate/hydroxyapatite (CC/NAC/HAP) for the subchondral bone layer, which is cross-linked with citric acid. Physicochemical characterization confirmed scaffold integration, enhanced thermal stability, and a porous architecture. The scaffold demonstrated optimal porosity (63.12%), degradation (62.08% over 28 days), superior swelling potential, and enhanced bio-mineralization in simulated body fluid. In vitro studies using MG-63 osteoblast-like cells and MC3T3-E1 cells showed high biocompatibility, increased alkaline phosphatase activity, and enhanced calcium deposition (33.73 ± 0.53 μg/mg of protein at 21 days). Gene expression analysis revealed upregulation of osteogenic (COL I ~23-fold, RUNX-2 ~15-fold, OCN ~8-fold) and chondrogenic (COL II ~12-fold, SOX-9 ~10-fold, ACAN ~6-fold) markers, confirming osteochondral regeneration potential. In vivo studies involving the implantation of 3 mm femoral trochlear OCDs in albino Wistar rats (n = 3 per group) resulted in substantial bone and cartilage regeneration, with complete defect closure by 12 weeks. Radiographic and histological assessments at 4, 8, and 12 weeks confirmed well-organized osteochondral repair, demonstrating superior regenerative capability compared to control groups. This study establishes the novelty of the fish collagen-based bilayer scaffold as a promising candidate for osteochondral tissue engineering, supporting effective cartilage and subchondral bone regeneration in OCD treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.37977DOI Listing

Publication Analysis

Top Keywords

subchondral bone
12
fish collagen-based
8
collagen-based bilayer
8
osteochondral tissue
8
cartilage subchondral
8
bilayer scaffold
8
scaffold
6
osteochondral
5
bilayer composite
4
composite scaffold
4

Similar Publications

Bioabsorbable fixation of a pediatric trochlear notch chondral injury.

J Surg Case Rep

September 2025

Department of Orthopaedics and Sports Medicine, University at Buffalo, 462 Grider Street, Buffalo, NY 14215, United States.

An 8-year-old girl fell onto her outstretched arm, sustaining proximal ulna and radial neck fractures. After closed reduction and casting in the emergency department, radiographs showed improved alignment but limited bony detail. A CT scan performed 3 days later demonstrated 18° apex-medial angulation of the radial neck, slight radiocapitellar subluxation, and subtle calcification near the trochlear notch, concerning intra-articular injury.

View Article and Find Full Text PDF

Immunoregulatory orchestrations in osteoarthritis and mesenchymal stromal cells for therapy.

J Orthop Translat

November 2025

Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Provincial Stem Cell Research Institute, School of Basic Medicine and Life Sciences, Hainan Medical University,

Unlabelled: Osteoarthritis (OA) is characterized by the inability of stable and complex joint structures to function as they did, accompanied by inflammation, tissue changes, chronic pain, and neuropathic inflammation. In the past, the primary focus on the causes of joint dysfunction has been on mechanical stress leading to cartilage wear. Further researches emphasize the aging of cartilage and subchondral bone triggered cartilage lesion and osteophyte formation.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a multifactorial, mechano-inflammatory joint disorder characterized by cartilage degradation, synovial inflammation, and subchondral bone remodeling. Despite its high prevalence and significant impact on quality of life, no disease-modifying treatments have been approved. In many other disease areas, advanced omics technologies are impacting the development of advanced therapies.

View Article and Find Full Text PDF

Objectives: This study aims to evaluate the evolution of subchondral sacroiliac joint (SIJ) sclerosis from pregnancy to 12 months postpartum, and to explore preceding and concomitant magnetic resonance imaging (MRI) features, potentially indicating osteitis condensans ilii (OCI).

Methods: One hundred three first-time mothers were recruited for serial SIJ MRIs. MRI scans were performed at pregnancy weeks 20 and 32, and at 3, 6, and 12 months postpartum.

View Article and Find Full Text PDF

Stage-dependent effects of moderate treadmill exercise on cartilage preservation and subchondral bone remodeling in mouse osteoarthritis progression.

Osteoarthritis Cartilage

September 2025

Center for Translational Medicine, Departments of Medicine and Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States; Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107

Objective: Exercise is widely advocated for osteoarthritis (OA) treatment; however, its effectiveness across disease stages, particularly in advanced OA, remains inconclusive. This study assessed the impact of treadmill exercise at distinct OA stages to determine optimal intervention timing.

Methods: Following validation of a moderate treadmill protocol, 96 male C57BL/6J mice underwent destabilization of the medial meniscus (DMM) surgery on the right knee and sham surgery on the left.

View Article and Find Full Text PDF