98%
921
2 minutes
20
Natural polymers, polysaccharides, demonstrate piezoelectric behavior suitable for force sensor manufacturing. Carrageenan hydrogel film with α-iron oxide particles can act as a piezoelectric polysaccharide-based force sensor. The mechanical impact on the hydrogel caused by a falling ball shows the impact response time, which is measured in milliseconds. Repeating several experiments in a row shows the dynamics of fatigue, which does not reduce the speed of response to impact. Through the practical experiments, we sought to demonstrate how theoretical knowledge describes the hydrogel we elaborated, which works as a piezoelectric material. In addition to the theoretical basis, which includes the operation of the metal and metal oxide contact junction, the interaction between the metal oxide and the hydrogel surfaces, the paper presents the practical application of this knowledge to the complex hydrogel film. The simple calculations presented in this paper are intended to predict the hydrogel film's characteristics and explain the results obtained during practical experiments. Carrageenan, as a low-cost and already widely used polysaccharide in various industries, is suitable for the production of low-cost force sensors in combination with iron oxide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12349296 | PMC |
http://dx.doi.org/10.3390/s25154594 | DOI Listing |
Int J Comput Assist Radiol Surg
September 2025
School of Mechanical Engineering, Hanoi University of Science and Technology, No.1 Dai Co Viet, Bach Mai, Hanoi, Vietnam.
Purpose: Localization of abdominal tissue, such as tumors, in minimally invasive surgery (MIS) is crucial but challenging due to the lack of tactile sensation. This study aims to develop a tactile force sensor that provides tactile sensation for surgeons, enabling accurate tumor localization while ensuring surgical safety.
Methods: This study proposes an acoustic reflection-based tactile force sensor, with preliminary theoretical analyses and fundamental experiments performed to assess its response to applied forces.
Microsyst Nanoeng
September 2025
School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China.
Tactile sensors are crucial in robotics and medical diagnostics, requiring precise real-time detection. However, the development of a compact sensor that can measure force across a wide range, with high resolution and rapid response along three axes, remains extremely limited. Herein, an opto-electro-mechanical tactile sensor is reported, utilizing a monolithically integrated GaN-based optochip with a fingerprint-patterned polydimethylsiloxane (PDMS) film.
View Article and Find Full Text PDFJ Physiol
September 2025
Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.
Cardiorespiratory responses to physical exercise are expected to meet the organism's metabolic demands. As carotid body (CB) glomus cells have been proposed as metabolic sensors, we sought to determine their contribution to peak oxygen uptake ( ) during exercise in rats. Adult male Wistar Kyoto rats underwent bilateral co-injection of two adeno-associated viruses (AAVs) at the CB bifurcation (AVV-TH-Cre-SV40 and AVV-hSyn-DREADD(Gi)-mCherry).
View Article and Find Full Text PDFLangmuir
September 2025
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, United States.
Aluminum nanoparticles (Al NPs) were synthesized via catalyzed thermal reduction of an aluminum precursor in the presence of a capping ligand. A systematic study was conducted to examine the effect of dilution on nanoparticle synthesis by varying the volume of anhydrous toluene across four dilution factors while maintaining constant molar quantities of the aluminum precursor, catalyst, and ligand. This methodology is relevant for scale-up processes, where more dilute conditions can mitigate nanoparticle reactivity and enhance safety.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
September 2025
Understanding foot kinetics is fundamental to analyzing human locomotion, offering critical insights into mechanical loads exerted on the feet. While vertical ground reaction force (vGRF) is widely used in biomechanics research, comprehensive 3D kinetic measurements, including ground reaction force (GRF), ground reaction moment (GRM), and center of pressure (CoP) along the anterior-posterior and medial-lateral axes, provide deeper insights for various applications. Smart insoles, though portable, cost-effective, and user-friendly, primarily capture vGRF and often generate lower-quality data than force plates and instrumented treadmills.
View Article and Find Full Text PDF