98%
921
2 minutes
20
Starch extracted from malanga () is a biopolymer with considerable industrial potential thanks to its high starch content (70-80% on a dry basis) and small granule size, which give it distinctive functional properties. To expand its applications in advanced processes such as encapsulation, it is necessary to modify its structural and physicochemical characteristics. This study evaluated the effects of ultrasound (US) and chemical cross-linking (CL) on the properties of this starch. US was applied at various times and amplitudes, while CL was performed using sodium trimetaphosphate and sodium tripolyphosphate, with sodium sulfate as a catalyst. US treatment reduced particle size and increased amylose content, resulting in lower viscosity and gelatinization temperature, without affecting granule morphology. Meanwhile, CL induced phosphate linkages between starch chains, promoting aggregation and reducing amylose content and enthalpy, but increasing the gelatinization temperature. The modified starches exhibited low syneresis, making them potentially suitable for products such as pastas, baby foods, and jams. Additionally, ultrasound modification enabled the production of fine starch microparticles, which could be applied in the microencapsulation of bioactive compounds in the food and pharmaceutical industries. These findings suggest that modified malanga starch can serve as a functional and sustainable alternative in industrial applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12346462 | PMC |
http://dx.doi.org/10.3390/foods14152609 | DOI Listing |
Probiotics Antimicrob Proteins
September 2025
Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus.
Probiotics are live beneficial microorganisms that confer health benefits to the host when administered in adequate amounts, have gained considerable scientific and commercial interest for their ability to support gut health, strengthen immunity, and reduce disease risk. This review traces the genesis of probiotic science from its origins in traditional fermented foods to contemporary clinical applications, offering a conceptual understanding of its evolution. A clear distinction is drawn between endogenous probiotics, naturally resident in the human microbiome, and exogenous probiotics, introduced via dietary supplements and functional foods.
View Article and Find Full Text PDFPest Manag Sci
September 2025
Laboratory of Applied Entomology, Graduate School of Horticulture, Chiba University, Chiba, Japan.
Background: The coevolutionary arms race between echolocating bats and tympanate moths has driven the evolution of ultrasound-mediated escape behaviors in moths. Bat-emitted ultrasonic pulses vary in sound intensity and temporal structure, with pulse repetition rate (PRR) which intrinsically encode critical information about predation risk, i.e.
View Article and Find Full Text PDFDrug Des Devel Ther
September 2025
Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.
Purpose: Spinal anesthesia-induced hypotension can cause detrimental effects on both the mother and the fetus, and it remains a significant concern in obstetric anesthesia. The use of vasopressors is considered the most reliable and effective approach. Previous studies have shown that norepinephrine appears to be superior to phenylephrine in maintaining maternal heart rate and cardiac output.
View Article and Find Full Text PDFBMC Neurol
September 2025
Department of Neurology, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen, North Rhine-Westphalia, Germany.
Background: Cerebellar pathologies in adults can have a wide range of hereditary, acquired and sporadic-degenerative causes. Due to the frequency in daily hospital, especially intensive care, settings, electrolyte imbalances are an important, yet rare differential diagnosis. The hypomagnesemia-induced cerebellar syndrome (HiCS) constitutes a relevant disease entity with clinical and morphological variability due to a potential progression of symptoms and a promising causal treatment.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Faculty of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China.
A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.
View Article and Find Full Text PDF