98%
921
2 minutes
20
The competitive retention of pollutants in water tables determines their environmental fate and guides routes for their removal. To distinguish the fine differences in competitive binding at zeolite adsorption centers, a group of neonicotinoid pesticides is compared, relying on theoretical (energy of adsorption, orientation, charge distribution) and experimental (spectroscopic and thermogravimetric) analyses for quick, inexpensive, and reliable screening. The MOPAC/QuantumEspresso platform was used for theoretical calculation, indicating close adsorption energy values for acetamiprid and imidacloprid (-2.2 eV), with thiamethoxam having a lower binding energy of -1.7 eV. FTIR analysis confirmed hydrogen bonding, among different dipole-dipole interactions, as the dominant adsorption mechanism. Due to their comparable binding energies, when the mixture of all three pesticides is examined, comparative adsorption capacities are evident at low concentrations, owing to the excellent adsorption performance of the FAU zeotype. At higher concentrations, competition for adsorption centers occurs, with the expected thiamethoxam binding being diminished due to the lower bonding energy. The catalytic impact of zeolite on the thermal degradation of pesticides is evidenced through TG analysis, confirming the adsorption capacities found by UV/VIS and HPLC/UV measurements. Detailed analysis of spectroscopic results in conjunction with theoretical calculation, thermal profiles, and UV detection offers a comprehensive understanding of neonicotinoids' adsorption and can help with the design of future adsorbents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12348587 | PMC |
http://dx.doi.org/10.3390/molecules30153267 | DOI Listing |
J Am Chem Soc
September 2025
Department of Chemical Engineering, National Taiwan University, Taipei 106319, Taiwan.
To address the increasingly limited water availability, using metal-organic frameworks (MOFs) to capture atmospheric water vapor as usable resources has emerged as a promising strategy. The adsorption characteristics of MOFs as well as their step pressure (i.e.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
School of Chemical Engineering, State University of Campinas-Universidade Estadual de Campinas, Albert Einstein Av., 500, Campinas, SP, 13083-852, Brazil.
Bisphenol A (BPA) is a persistent organic pollutant with toxic effects on human health and ecosystems. In this study, the performance of MWCNT-OH functionalized with iron nanoparticles (MWCNT-OH@Fe) using sugarcane bagasse extract as a reducing agent (green synthesis) was evaluated for BPA adsorption. The kinetics are fast, between 10 and 20 min in the range of concentrations evaluated and the resistance to external film diffusion (external film mass transfer) identified as the rate-limiting step of the process.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
September 2025
Key Laboratory of Tea Science of Ministry of Education and Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Hunan Agricultural University, Changsha, China.
Jasmine tea, a further processing tea made by scenting green, black, oolong, or other tea with jasmine flowers, is widely appreciated worldwide for its fragrant aroma, refreshing taste, and beneficial health effects. The production of jasmine tea is a meticulous and complex process that involves chemical reactions, physical adsorption, and flavor interaction effects at the sensory level between jasmine and tea. This paper provides a comprehensive review of the research on the processing technology, characteristic aroma formation, nonvolatile compounds, and health benefits of jasmine tea.
View Article and Find Full Text PDFInorg Chem
September 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
The photocatalytic reduction of carbon dioxide (CO) to chemicals holds significant importance for mitigating the current energy crisis. Rational design of catalytic centers within well-defined structures can effectively enhance the reaction activity and selectivity. In this study, we constructed interrupted zeolitic boron imidazolate frameworks (BIFs) featuring unsaturated coordination at the central Co ion.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
MAX IV Laboratory, Lund University, P.O. Box 118, SE-22100 Lund, Sweden.
Photoelectron angular distributions are reported for a series of aqueous potassium carboxylate solutions, ranging from bulk-solvated to strongly surface-active species. The quantitative information determined from this work demonstrates how the measured photoelectron angular distributions are influenced by the ions' increasing propensity for the surface in aqueous solutions. Our study provides insight into the relative depth and location of the carboxylate functional group, which is valuable for investigating the adsorption of organic molecules at liquid-vapor interfaces.
View Article and Find Full Text PDF