98%
921
2 minutes
20
Antimicrobial resistance (AMR) poses a critical global health threat by rendering existing antibiotics ineffective against infections, leading to increased mortality, prolonged illnesses, and higher healthcare costs. Developing new antibiotics is essential to combat resistant pathogens, safeguard modern medical procedures, and prevent a return to a pre-antibiotic era where common infections become untreatable. We report a series of chiral tricarbonyl rhenium(I) complexes incorporating enantiopure pinene-substituted bipyridine ligands (L#) of the general formula -[Re(CO)L#X] and -[Re(CO)L#Py] (where X = Cl or Br and Py = pyridine). These complexes were isolated as mixtures of two diastereomers, characterized by standard techniques, and evaluated for cytotoxic activity against methicillin-resistant and methicillin-sensitive (MRSA and MSSA). The results revealed notable antibacterial efficacy (MIC = 1.6 μM), reflected in high therapeutic indices (Ti > 10). In contrast, analogous complexes bearing non-chiral 2,2'-bipyridine ligands exhibited no activity, underscoring the critical role of chirality in modulating biological interactions at the molecular level. These findings highlight the potential of chiral Re(I) complexes as promising scaffolds for the development of more potent and selective antibacterial agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12348105 | PMC |
http://dx.doi.org/10.3390/molecules30153183 | DOI Listing |
Dalton Trans
September 2025
Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea.
The nanoscale environment within the void spaces of metal-organic frameworks (MOFs) can significantly influence the photoredox catalytic activity of encapsulated visible-light photoredox catalysts (PCs). To compare two isostructural PC@In-MOF systems, three cationic Ru(II) polypyridine complexes were successfully encapsulated within the mesoscale channels of the anionic framework of InTATB (HTATB = 4,4',4''--triazine-2,4,6-triyltribenzoic acid), which features a doubly interpenetrated framework structure. This encapsulation yielded three heterogenized visible-light PCs, RuL@InTATB, where L = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), or 2,2'-bipyrazine (bpz).
View Article and Find Full Text PDFChem Sci
August 2025
Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, State Key Laboratory of Synergistic Chem-Bio Synthesis, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
Adipic acid is an essential platform molecule for polymer production and is industrially manufactured by thermochemical oxidation of the cyclohexanone/cyclohexanol mixture (KA oil). Alternatively, electrifying provides a green and sustainable route to synthesizing adipic acid, but has been restricted by the low catalytic efficiency. Herein, we report that a nickel hydroxide electrocatalyst functionalized with 4,4'-bipyridine (Bipy-Ni(OH)) delivers a 3-fold greater productivity compared with that of pristine Ni(OH), achieving an excellent yield (90%) towards efficient adipic acid electrosynthesis.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States.
Bipyridine-ligated nickel(I) and nickel(0) intermediates are widely proposed in Ni-catalyzed cross-coupling reactions. However, few isolable Ni and Ni complexes with catalytically relevant bipyridine ligands are known, limiting our understanding of these complexes' speciation and reactivity. In this work, we identify and investigate well-defined, isolable (bpy)Ni and (bpy)Ni complexes to characterize their behavior in catalytic systems.
View Article and Find Full Text PDFChemistry
September 2025
Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
The coordination chemistry of the planar, doubly π-extended bipyridine analog, 6,6',7,7'-biphenanthridine (p-biphe), is presented. The phenanthridine units in p-biphe are fused together at the 6- and 7- positions, and the resulting rigid ligand is compared with the more flexible parent "biphe" fused only at the 6-positions. p-Biphe is intensely fluorescent in solution with a much higher quantum yield, but, unlike biphe, at 77 K the fluorescence is not accompanied by any significant phosphorescence.
View Article and Find Full Text PDFOrg Lett
September 2025
College of Chemistry and Chemical Engineering and Luoyang Key Laboratory of Green Synthesis and Photofunctional Materials, Luoyang Normal University, Luoyang, Henan 471934, China.
Inspired by the excellent stereoinduction of palladium catalytic glycosylation with glycals via an inner-sphere pathway, a nickel-catalyzed, stereoselective -aryl glycosylation has been developed for glucals bearing a pentafluorobenzoate (PFB) group at the C3 position. The extremely electron-deficient nature of PFB not only endows stronger activity compared to the traditional leaving groups but also functions as an orientation group, presumably through the strong π-π interactions with the bipyridine ligand coordinated to the nickel center, thereby enabling the β-selective formation of a -aryl glycosidic bond with aryl iodides as glycosyl acceptors under mild conditions. This method features a broad substrate scope, high efficiency, and scalability, providing a general solution to the synthesis of challenging β--glycosides.
View Article and Find Full Text PDF