Catalyst-free partial oxidation of methane under ambient conditions boosted by mechanical stirring-enhanced ultrasonic cavitation.

Nat Commun

State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The partial oxidation of methane (POM) into value-added C chemicals (e.g., CHOH, HCHO, and CO) offers a promising approach for natural gas utilization under mild conditions. However, existing POM systems often rely on complex catalyst designs and the addition of extra oxidants. Here, we developed a catalyst-free POM system by integrating mechanical stirring with a low-frequency ultrasonic field. A high production rate of C chemicals (129.26 µmol h) and methane conversion rate (22%) were achieved under ambient conditions (298 K, P = 0.1 bar, P = 0.1 bar, P = 0.8 bar). Mechanism studies revealed that the introduction of mechanical stirring amplified the ultrasonic cavitation effect, promoting the in-situ release of reactive oxygen species. Reaction pathway investigation confirmed that hydroxyl radicals facilitated the cleavage of methane C-H bonds and that oxygen participated in the generation of POM products. This strategy provides a sustainable avenue for the value-added conversion of methane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12350788PMC
http://dx.doi.org/10.1038/s41467-025-62924-2DOI Listing

Publication Analysis

Top Keywords

partial oxidation
8
oxidation methane
8
ambient conditions
8
ultrasonic cavitation
8
mechanical stirring
8
methane
5
catalyst-free partial
4
methane ambient
4
conditions boosted
4
boosted mechanical
4

Similar Publications

This study evaluated the effects of dietary recovered frying soybean oil (RFSBO) and selenium nanoparticles (SeNPs) on growth performance, hepatic metabolism, intestinal morphology, and the expression of antioxidant, immune, and growth-related genes in juvenile Asian sea bass (Lates calcarifer, 41.5 ± 0.1 g) reared under high temperature (32-33 °C) and high salinity (38-40 ppt).

View Article and Find Full Text PDF

Simultaneous removal of NO and propane by solid electrolyte cells with LaPrBaNiO bifunctional electrodes.

J Hazard Mater

September 2025

School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Environmental Chemistry and Low Carbon Technology, Zhengzhou 450001, China. Electronic address:

Solid electrolyte cell is a novel gas purification approach, which has unique superiority in simultaneous nitrogen oxides (NO) and volatile organic compounds (VOCs) removal. The development of effective electrode materials and the comprehensive understanding of reaction mechanisms are essential to advancing this technology. In this study, LaPrBaNiO (x = 0, 0.

View Article and Find Full Text PDF

Serum Lipidomics Profiling to Identify Potential Biomarkers of Ischemic Stroke: A Pilot Study in Chinese Adults.

Biomed Environ Sci

August 2025

Department of Epidemiology, School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, China;Taixing Second People's Hospital, Suzhou Medical College of Soochow University, Taizhou 225400, Jiangsu, China.

Objective: Lipid oxidation is involved in the pathogenesis of atherosclerosis and may be contribute to the development of Ischemic stroke (IS). However, the lipid profiles associated with IS have been poorly studied. We conducted a pilot study to identify potential IS-related lipid molecules and pathways using lipidomic profiling.

View Article and Find Full Text PDF

c-Jun N-terminal kinases (JNKs), a subfamily of mitogen-activated protein kinases (MAPKs), are key mediators of cellular responses to environmental stress, inflammation, and apoptotic signals. The three isoforms-JNK1, JNK2, and JNK3 exhibit both overlapping and isoform-specific functions. While JNK1 and JNK2 are broadly expressed across tissues and regulate immune signaling, cell proliferation, and apoptosis, JNK3 expression is largely restricted to the brain, heart, and testis, where it plays a crucial role in neuronal function and survival.

View Article and Find Full Text PDF

Turn-on type fluorescent photochromism of a diarylmaleimide-S,S,S',S'-tetraoxide.

Photochem Photobiol Sci

September 2025

Faculity of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama, Kanagawa, 240-8501, Japan.

In recent years, fluorescence-switchable molecules have garnered significant attention as fluorescent dyes for super-resolution fluorescence microscopy, which is increasingly demanded in the field of biochemical imaging. Among such molecules, diarylethene-S,S,S',S'-tetraoxide derivatives have proven particularly promising due to their ability to achieve high contrast fluorescence switching. Diarylethenes incorporating perfluorocyclopentene as the ethene bridge have become the standard scaffold due to their excellent fatigue resistance and thermal stability.

View Article and Find Full Text PDF