Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hyposmia, a common non-motor symptom in Parkinson's disease (PD) linked to reduced odor sensitivity, is associated with brain structural and functional changes, but dynamic brain activity and altered regional information exchange remain underexplored, limiting insight into underlying brain states. We selected 15 PD patients with severe hyposmia (PD-SH), 15 PD patients with normal cognition (PD-CN), and 15 healthy controls (HC). Using functional MRI, we assessed the brain's spatiotemporal connectivity (brain-state) alterations, and the brain's capacity for higher-order information exchange (synergy and redundancy). A dynamic brain state with complex-long-range connections was significantly reduced in PD-SH and PD-CN, compared to HC. Brain-states consisting of modular-clusters in sensorimotor and frontal areas occurred more frequently in PD-SH than in PD-CN and HC. Higher-order information flow was reduced in PD patients, with PD-SH showing a greater reduction in synergetic information flow in frontal, insula, and left sensory-motor. These findings suggest potential discriminative biomarkers for PD-SH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12350643PMC
http://dx.doi.org/10.1038/s41540-025-00574-2DOI Listing

Publication Analysis

Top Keywords

dynamic brain
8
pd-sh pd-cn
8
pd-sh
5
altered dynamic
4
dynamic functional
4
functional connectivity
4
reduced
4
connectivity reduced
4
reduced higher
4
higher order
4

Similar Publications

Exploring LRP-1 in the liver-brain axis: implications for Alzheimer's disease.

Mol Biol Rep

September 2025

Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.

Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.

View Article and Find Full Text PDF

Purpose: Cardiac noradrenergic denervation visualized by meta-[I]iodobenzylguanidine ([I]MIBG) imaging supports the diagnosis of Parkinson's disease (PD). Recently, meta-[F] fluorobenzylguanidine ([F]MFBG) PET demonstrated favorable imaging characteristics compared with [I]MIBG scintigraphy for neuroendocrine tumors. We assessed [F]MFBG dosimetry and myocardial pharmacokinetics in healthy controls and PD patients.

View Article and Find Full Text PDF

Background: Physical resilience-the ability to withstand, recover, or adapt after a stressor-is critical in older adults facing acute insults. We conceptualize physical resilience to comprise two distinct but related components: resistance (immediate physiological response to the stressor) and recovery (subsequent health changes). These two components were used to evaluate how individuals respond to hip fracture-a common and severe geriatric stressor.

View Article and Find Full Text PDF

Concurrent recording of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) signals reveals cross-scale neurovascular dynamics crucial for explaining fundamental linkages between function and behaviors. However, MRI scanners generate artifacts for EEG detection. Despite existing denoising methods, cabled connections to EEG receivers are susceptible to environmental fluctuations inside MRI scanners, creating baseline drifts that complicate EEG signal retrieval from the noisy background.

View Article and Find Full Text PDF

The bacterial OMP amyloids modulate α-synuclein and amyloid-β aggregation.

Int J Biol Macromol

September 2025

Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia; Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology Russian Academy of Sciences, 4 Tikhoretsky ave., 194064, St. Petersburg, Russia. Electronic address:

Growing evidence links gut microbiota to neurodegenerative diseases, yet direct molecular interactions between bacterial and host amyloid proteins remain incompletely understood. Bacterial amyloids represent an understudied yet potentially critical component of gut-brain communication in neurodegeneration. Here, we provide the first investigation of whether amyloids formed by outer membrane proteins (OMPs) of enterobacteria can modulate neurodegeneration-associated protein aggregation.

View Article and Find Full Text PDF