98%
921
2 minutes
20
Smartphones with integrated global navigation satellite system (GNSS) functionality are increasingly used in various apps beyond communication, including positioning, navigation, and tracking. This study explores the potential of smartphone GNSS data to improve ski slope safety through motion data analysis. Apps such as iSKI, Skitude, Slopes, and Strava measure speeds, distances, and altitude differences, generating valuable data on skiers' movements. These data help ski resorts in planning and accident prevention by identifying high-risk areas based on movement patterns. We compared the accuracy of position and speed data from four apps across four smartphone models (two Android and two iOS) against a differential GNSS (dGNSS) reference system. Data were collected at two ski resorts during the winter of 2022/23, with smartphones recording at 1 Hz and dGNSS at 50 Hz. Analysis focused on downhill runs, excluding initial recording phases and vertical position data. Accuracy was assessed by calculating the Euclidean distance between the time-synchronized smartphone data and dGNSS reference data. High-end smartphones provided more accurate position data, with an average error of approximately 4 m, compared to 6 m for low-end models. Speed data were reliable across all devices, with an average error <1.9 km/h. However, accuracy diminished with increasing speeds and varied based on location-specific environmental factors. Thus, although smartphone position data can evaluate non-exact position-dependent parameters, such as slope utilization and user density, more precise systems, such as dGNSS, are necessary for exact position-dependent evaluations. Speed data derived from cleaned position data are reliable for estimating skier speeds, and data from different apps can be combined if consistent calculation methods are used. Future advances in smartphone technology are expected to enhance data accuracy. Recommendations include using smartphone data in open terrain for better accuracy and exercising caution when interpreting absolute position data for accident prevention or other context-specific analyses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12349078 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0327896 | PLOS |
Reprod Biol
September 2025
Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 218 Jixi Road, Hefei Anhui230022, China; Key Laboratory of Population Health Across
Current research indicates that polyethylene terephthalate microplastics (PET-MPs) may significantly impair male reproductive function. This study aimed to investigate the potential molecular mechanisms underlying this impairment. Potential gene targets of PET-MPs were predicted via the SwissTargetPrediction database.
View Article and Find Full Text PDFEBioMedicine
September 2025
Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China. Electronic address:
Eur J Radiol
September 2025
Department of Radiology, Affiliated Hospital of Hebei University, Baoding 071000, China. Electronic address:
Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.
Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.
JACC Heart Fail
September 2025
Université de Lorraine, Inserm, Centre d'Investigations Cliniques Plurithématique 1433, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France.
Pathol Res Pract
September 2025
Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China. Electronic address:
Background: Dermal clear cell sarcoma (DCCS) is a rare malignant mesenchymal neoplasm. Owing to the overlaps in its morphological and immunophenotypic profiles with a broad spectrum of tumors exhibiting melanocytic differentiation, it is frequently misdiagnosed as other tumor entities in clinical practice. By systematically analyzing the clinicopathological characteristics, immunophenotypic features, and molecular biological properties of DCCS, this study intends to further enhance pathologists' understanding of this disease and provide a valuable reference for its accurate diagnosis.
View Article and Find Full Text PDF