98%
921
2 minutes
20
The biomechanical environment around implants plays a crucial role in the stability and success of dental implants. In our previous studies, laboratory-based micro X-ray computed tomography (micro-CT) was used to conduct in situ biomechanical experiments and finite element method (FEM) analyses of bone-implant biomechanics. Compared to micro-CT, cone beam computed tomography (CBCT) is more commonly used in dental clinics. This study uses CBCT to investigate peri-implant bone biomechanics. Voxel-based finite element models were constructed from CBCT images of five human cadaveric bone-tooth specimens. The three-dimensional strain distribution in bone surrounding immediately loaded implants was computed and quantitatively compared with experimental results. Our findings revealed significant strain concentration at bone-implant contact (BIC) areas (greater than 0.8%), extending to both buccal and lingual bone plates. Notably, the thinner buccal plate exhibited greater strain concentration (greater than 0.8%) than the thicker lingual plate (approximately 0.6%). The comparison of FEM-computed averaged maximum principal strain values and experimental results showed good agreement for both buccal (slope 0.892, R-squared 0.9607) and lingual plates (slope 1.0965, R-squared 0.9633). However, CBCT-based FEM overestimated strain at BIC locations by a factor of 1.7. CBCT-based FEM is effective in predicting strain in both buccal and lingual plates. This strain concentration in the buccal plate may contribute to observed buccal bone resorption. Insights from this work could inform development of biomechanics-guided preclinical assessments and CBCT-based implant planning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1115/1.4069393 | DOI Listing |
Nano Lett
September 2025
Department of Physics, Columbia University, New York, New York 10027, United States.
Graphene-based photonic structures have emerged as fertile ground for the controlled manipulation of surface plasmon polaritons (SPPs), providing a two-dimensional platform with low optoelectronic losses. In principle, nanostructuring graphene can enable further confinement of nanolight─enhancing light-matter interactions in the form of SPP cavity modes. In this study, we engineer nanoscale plasmonic cavities composed of self-assembled C arrays on graphene.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2025
Department of Mathematical Sciences, University of Liverpool, Liverpool, UK.
Microswimmer locomotion in non-Newtonian fluids is crucial for biological processes, including infection, fertilization and biofilm formation. The behaviour of microswimmers in these media is an area with many conflicting results, with swimmers displaying varying responses depending on their morphology, actuation and the complex properties of the surrounding fluid. Using a hybrid computational approach, we numerically investigate the effect of shear-thinning rheology and viscoelasticity on a simple conceptual microswimmer consisting of three linked spheres.
View Article and Find Full Text PDFJ Prosthet Dent
September 2025
Professor, Washington Dental Service Endowed Chair in Dentistry, and Chair, Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, Wash.
A practical and novel technique used both in testing and in practice when tightening dental implant screw systems is described for determining the preload implant screw systems, which differs from traditional tightening procedures that are based solely on the application of a predetermined manufacturer specified torque value. Preload is the critical quantity for a reliable joint: about 90% of tightening torque goes into overcoming friction and the remaining amount, approximately 10%, goes into preload. Because of the heavy dependence of torque on friction, the actual preload achieved is subject to large variability of up ±35%, depending on surface conditions (dry, wet, or contaminated).
View Article and Find Full Text PDFJ Prosthet Dent
September 2025
Full Professor, School of Mechanical Engineering, Universidad Industrial de Santander, Bucaramanga, Colombia. Electronic address:
Statement Of Problem: Although custom temporomandibular joint (TMJ) prostheses manufactured via computer-aided design and manufacturing (CAD-CAM) and produced through 3-dimensional (3D) printing or computer numerical control (CNC) allow for sagittal curvature adjustments in the glenoid fossa, their design remains unregulated by the Food and Drug Administration. Consequently, the geometry is determined largely by the engineer's discretion, with limited biomechanical evidence to guide these decisions. The lack of validation regarding how sagittal curvature influences joint stress distribution under various anatomical and functional conditions represents a gap in current knowledge that warrants investigation.
View Article and Find Full Text PDFJ Craniofac Surg
September 2025
Department of Craniomaxillofacial Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Plastic Surgery Hospital, Beijing, China.
Objective: We designed a new distractor pairing a bioabsorbable upper fixing plate fixed by bioabsorbable screws with a traditional titanium distractor to simplify the second surgery removing the distractor after mandibular distraction osteogenesis. The present study aims to evaluate its biomechanical properties using finite element method.
Materials And Methods: Ten computer-aided designed models simulating mandibles of 5 patients under 2 working conditions, the instance of distraction and mastication, were produced.