98%
921
2 minutes
20
The rising use of biologic drugs has increased the demand for alternative gastric administration methods. Inception of devices engineered to insert medication into the mucosal lining overcomes limitations of traditional administration methods. Mechanical forces from such microneedle insertions can affect tissue and cellular behavior, particularly mechanotransduction markers. This study investigates the effects of needle insertion in gastric tissue to inform the design of alternative drug delivery devices. Experimental and computational approaches were utilized, using tension and radial compression tests on porcine gastric tissue to inform a finite element analysis (FEA) model. This model was validated with atomic force microscopy (AFM)-based micro-indentation to examine stiffness variations near the insertion site, and yes-associated-protein-1 (YAP-1) expression was analyzed to assess cellular mechanotransduction. AFM results revealed a distance-dependent decrease in tissue stiffness from the insertion site (p < 0.05), with significant differences in needle geometry (p < 0.05). The FEA model correlated well with AFM findings, confirming its validity for further cellular simulations. Mechanical stresses from needle insertion were shown to propagate through the tissue, affecting both cytoplasmic and nuclear stress distributions and altering nuclear morphology near the insertion site. The blunt needle produced a higher localized stress field compared to the sharp needle. Additionally, YAP-1 expression was lower in the injected samples than in control samples showing distance-dependent responses observed. This study demonstrates a validated model linking tissue mechanics and cellular responses, highlighting how needle geometry impacts gastric tissue mechanics and mechanotransduction, providing insights essential for designing gastric drug delivery devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10237-025-01986-z | DOI Listing |
Emerg Med Australas
October 2025
Emergency and Trauma Centre, The Alfred Hospital, Melbourne, Victoria, Australia.
Objectives: Acute pyelonephritis (APN) is a common diagnosis among patients presenting to the Emergency Department (ED). It is treated by empiric antibiotics within the ED. With a rise in antimicrobial resistance globally, it is unknown whether patients are being managed with empiric antibiotics that are appropriate for the causative organisms of APN.
View Article and Find Full Text PDFCirc Genom Precis Med
September 2025
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China (J.Z., S.R., L.C., M.C., F.T., B.A., Y.Y., H.L.).
Background: Previous studies have suggested that the associations between ambient air pollution and atherosclerotic cardiovascular diseases (ASCVD) differ by genotype. A genome-wide approach provides a more comprehensive understanding of this relationship on a genomic scale.
Methods: Using data from ≈300 000 UK Biobank participants, we conducted a genome-wide interaction analysis on 10 745 802 variants.
Brain Behav
September 2025
Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
Introduction: Anxiety and stress are prevalent mental health issues. Traditional drug treatments often come with unwanted side effects and may not produce the desired results. As an alternative, probiotics are being used as a treatment option due to their lack of specific side effects.
View Article and Find Full Text PDFTelemed J E Health
September 2025
VA Puget Sound Health Care System, Seattle, Washington, USA.
The Veterans Health Administration (VHA) Clinical Resource Hubs (CRHs) provide telemental health (TMH) services to improve access for Veterans, but use varies greatly across clinics. A retrospective FY23 analysis examined all VHA outpatient mental health encounters. Clinics were categorized by CRH-MH use and level of CRH-MH penetration.
View Article and Find Full Text PDFMicrob Drug Resist
September 2025
Drug Discovery Research, Wockhardt Research Centre, Wockhardt Ltd., Chhatrapati Sambhajinagar, India.
Cefepime (FEP), a fourth-generation cephalosporin combined with tazobactam (TAZ), a β-lactamase inhibitor, is being developed by Wockhardt as a pharmacodynamically optimized fixed dose combination (FEP-2 g + TAZ-2 g) for the treatment of multidrug-resistant Gram-negative infections. To undertake an exposure-response analysis for establishing pharmacokinetic (PK)/pharmacodynamic (PD) targets, it is crucial to characterize the PK profile of compounds in surrogate compartments, such as plasma and lung, in clinically relevant animal infection models used to evaluate efficacy. In the current study, PKs of FEP and TAZ were assessed in plasma and in epithelial lining fluid (ELF) of neutropenic noninfected, lung-infected, and thigh-infected mice.
View Article and Find Full Text PDF