98%
921
2 minutes
20
Cortical spreading depolarization (SD) is increasingly recognized as a major contributor to secondary brain injury. Noninvasive SD monitoring would enable the institution of SD-based therapeutics. Our primary objective is to establish proof-of-concept validation that scalp direct-current (DC)-potentials can provide noninvasive SD detection by comparing scalp DC-shifts from a high-density electrode array to SDs detected by gold-standard electrocorticography (ECoG). Our secondary objective is to assess usability and artifact tolerance. An 83 x 58 mm thermoplastic elastomer array with 29 6-mm diameter Ag/AgCl 1-cm spaced electrodes, the CerebroPatch™ Proof-of-Concept Prototype, was adhesively placed on the forehead with an intervening electrode gel interface to record DC-electroencephalography (DC-EEG) in normal volunteers and severe acute brain injury patients in the neuro-intensive care unit some with and some without invasive ECoG electrodes. The scalp and ECoG voltages were collected by a Moberg® Advanced ICU Amplifier. Artifacts were visually identified and usability issues were recorded. SD was scored on ECoG based on DC-shifts with associated high-frequency suppression and propagation. A six-parameter Gaussian plus quadratic baseline model was used to estimate ECoG and scalp electrode time-courses and scalp-voltage heat-map movies. The similarity of the noninvasive scalp and invasive ECoG DC-shift time-courses was compared via the Gaussian fit parameters and confirmed if the Coefficient-of-Determination was >0.80. Usability and artifact issues obscured most scalp Prototype device data of the 140 ECoG-coded SDs during 11 days in one sub-arachnoid hemorrhage patient. Twenty-six of these DC-shifts were in readable, artifact-free portions of scalp recordings and 24 of these had a >0.80 Coefficient-of-Determination (0.98 [0.02], median [IQR]) between invasive ECoG and noninvasive Prototype device DC-shifts. Reconstructed heat-map movies of the scalp DC-potentials showed a 5-cm extent, -460 µV peak region that persisted for ~70 seconds. These data suggest that these scalp DC-shifts (peak -457 ± 69 µV [mean ± StD], full-width-half-maximum 70.9 ± 5.92 seconds, area 18.7 ± 2.76 cm) depicted in the heat-map movies represent noninvasively detected SDs. These results using 26 SDs as the observational units suggest that noninvasive SD detection is possible using scalp DC-potential signals with a high spatial resolution EEG array. Although the high artifact burden data and low usability records were limiting, negative results, they serve as an important entrepreneurial recipe that provides suggestions for a future, re-designed device that would reduce artifacts and improve usability for DC-EEG SD detection needed to enable multi-modal monitoring for secondary brain injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12330841 | PMC |
http://dx.doi.org/10.1162/IMAG.a.76 | DOI Listing |
JAMA Cardiol
September 2025
Department of Cardiology, Inselspital University Hospital of Bern, University of Bern, Bern, Switzerland.
Importance: Right anomalous aortic origin of a coronary artery (R-AAOCA) is a rare congenital condition increasingly diagnosed with the growing use of cardiac imaging. Due to dynamic compression of the anomalous vessel, invasive fractional flow reserve (FFR) during a dobutamine-atropine volume challenge (FFR-dobutamine) is considered the reference standard. A reliable alternative method is needed to reduce extensive invasive testing, but it remains uncertain whether noninvasive imaging can accurately assess the hemodynamic relevance of R-AAOCA.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China.
In recent years, photosensitizer-based phototherapy has gained increasing attention in antibacterial applications due to its low cost, noninvasive nature, and low drug resistance. Among various materials, porphyrin-based metal-organic frameworks (MOFs) have demonstrated great potential, due to their good biocompatibility, facile designability, and excellent light absorption capabilities that enable highly efficient antibacterial efficacy. However, further optimization of their antibacterial performance remains a key challenge.
View Article and Find Full Text PDFJ Proteome Res
September 2025
Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China.
Colorectal cancer (CRC) is a major global health challenge due to its high incidence, mortality, and low rate of early detection. Early diagnosis, targeting precancerous lesions (advanced adenomas) and early stage CRC (Tis and T1), is critical for improving patient survival. Given the limitations of current detection methods for advanced adenomas, developing high-performance early diagnostic strategies is essential for effective prevention.
View Article and Find Full Text PDFKardiologiia
September 2025
Second Affiliated Hospital of Chongqing Medical University, Department of Ultrasound Medicine.
Objective This research investigated the application of real-time, three-dimensional speckle tracking imaging (RT-3D-STI) to evaluate left atrial (LA) function in individuals suffering from hypertensive heart disease (HHD) and heart failure with preserved ejection fraction (HFpEF).Material and methods This retrospective study included 100 patients with HHD and HFpEF hospitalized from August 2023to June 2024 (HFpEF group). 100 healthy individuals undergoing physical examinations comprised the control group.
View Article and Find Full Text PDFACS Nano
September 2025
State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
Optical imaging offers high sensitivity and specificity for noninvasive cancer detection, but conventional techniques suffer from limited probe accumulation, tissue autofluorescence, and poor depth resolution. Afterglow luminescence overcomes autofluorescence by emitting persistent light after excitation, yet its utility in vivo remains hindered by weak tumor enrichment and two-dimensional readouts lacking spatial context. Here, we report luminescent-magnetic nanoparticles (LM-NPs) coencapsulating luminescent trianthracene (TA) molecules and iron oxide cores within the amphiphilic polymer pluronic-F127.
View Article and Find Full Text PDF