Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Breaking the diffraction limit has been a key challenge in optical engineering and super-resolution imaging. In this work, we utilize a vectorial Debye integral neural network to design sub-diffraction focusing fields for high-NA objectives. By training the polarization states of incident light, we flexibly achieve transitions from diffraction-limited focusing to superoscillatory regimes. Through parameter adjustments, we optimize focal spot size, energy efficiency, and sidelobe distribution, achieving a focus with a 0.367λ FWHM and enhanced energy utilization. This method significantly simplifies the design process and demonstrates great potential for advanced optical applications, including super-resolution imaging and 3D field engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.555664DOI Listing

Publication Analysis

Top Keywords

diffraction limit
8
vectorial debye
8
debye integral
8
integral neural
8
neural network
8
super-resolution imaging
8
surpassing diffraction
4
limit vectorial
4
network breaking
4
breaking diffraction
4

Similar Publications

The rapid increase in population has driven the demand for fossil fuel energy, contributing to increased carbon emissions that ultimately accelerate global warming and climate change. Battery storage systems have many advantages over conventional energy sources. However, they face limitations such as energy storage, cost, and environmental hazards that come with the use of chemical binders.

View Article and Find Full Text PDF

Bioremediation offers a sustainable strategy for mitigating heavy metal contamination in soil, but is often constrained by slow removal kinetics, limited uptake efficiency, and high implementation costs. This study investigates dried mycelium membranes, rich in surface-bound proteins and high surface area, as a promising biosorbent for in situ Pb(II) remediation in urban soils. Untreated mycelium membranes buried in soil achieved Pb(II) removal efficiencies of ∼70 % and ∼40 % at initial lead soil concentrations of 100 mg/kg and 1500 mg/kg, respectively, within eight days.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries (AZIBs) represent an environmentally benign energy storage alternative. However, the VO cathode suffers from limited cycling stability and rate capability due to structural instability, vanadium dissolution, and high desolvation energy caused by the large size of [Zn(HO)] deintercalation. Address these issues, we introduce a VO/VOPO (VOP) heterostructure that that reinforces the crystal structure to suppress vanadium dissolution and establishes a hydrophilic interface reducing the desolvation energy of Zn.

View Article and Find Full Text PDF

Role of Liquid Composition in the Transient Liquid Assisted Growth of Superconducting YBaCuO Films.

Adv Mater

September 2025

Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, Bellaterra, Catalonia, 08193, Spain.

The unparalleled loss-less electrical current conduction of high-temperature superconducting (HTS) materials encourages research on YBaCuO (YBCO) to unravel opportunities toward numerous applications. Nonetheless, production costs and throughput of the commercialized HTS Coated Conductors (CCs) are still limiting a worldwide spread. Transient liquid assisted growth (TLAG) is a non-equilibrium process displaying ultrafast growth rate which, when combined with chemical solution deposition (CSD), is emerging as a strong candidate to reduce the cost/performance ratio of YBCO superconductors.

View Article and Find Full Text PDF

Hydrogen embrittlement (HE) poses a significant challenge to the durability of materials used in hydrogen production and utilization. Disentangling the competing nanoscale mechanisms driving HE often relies on simulations and electron-transparent sample techniques, limiting experimental insights into hydrogen-induced dislocation behavior in bulk materials. This study employs in situ Bragg coherent X-ray diffraction imaging to track three-dimensional (3D) dislocation and strain field evolution during hydrogen charging in a bulk grain of austenitic 316 stainless steel.

View Article and Find Full Text PDF