Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We introduce an agile light source bridging from the near ultraviolet to the visible spectral region by covering more than 240 THz through resonant dispersive wave (RDW) emission in a gas-filled hollow-core fiber waveguide. The light source allows tuning of a 20 nm (FWHM) spectrum from ∼340 nm to 465 nm (645 to ∼885 THz) with conversion efficiencies of (1.5 ± 0.4) %, providing spectral powers up to (2.6 ± 1) mW/nm. This technique is showcased for spectroscopy with broadband absorption measurements of nitrogen dioxide, a molecular species of major atmospheric relevance. To our knowledge, this is the first demonstration of absorption spectroscopy with an RDW-based light source. The presented measurements indicate conservation of the coherence of the frequency comb seeding the frequency up-conversion process, paving the way towards ultra-broadband (dual) comb molecular spectroscopy across the highly relevant ultraviolet and visible range.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.546751DOI Listing

Publication Analysis

Top Keywords

light source
12
resonant dispersive
8
dispersive wave
8
frequency comb
8
ultraviolet visible
8
ultra-broadband uv/vis
4
spectroscopy
4
uv/vis spectroscopy
4
spectroscopy enabled
4
enabled resonant
4

Similar Publications

Synchrotron light sources are powerful platforms for cutting-edge, multidisciplinary research, with dozens currently in operation, construction or commissioning worldwide. It is widely recognized that different research areas have specific demands for source capabilities. For the majority of synchrotron facilities, delivering high-brightness, high-flux synchrotron radiation stably through high-current electron beams is the primary mode of operation.

View Article and Find Full Text PDF

Plasmonic nanoparticles boost low-current perovskite LEDs governed by photon recycling effects.

RSC Adv

September 2025

Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC C/Sor Juana Inés de la Cruz, 3 Madrid 28049 Spain

Perovskite light-emitting diodes (PeLEDs) have emerged as a promising technology for next-generation display and lighting applications, thanks to their remarkable colour purity, tunability, and ease of fabrication. In this work, we explore the incorporation of plasmonic spherical nanoparticles (NPs) directly embedded into the green-emitting CsPbBr perovskite layer in a PeLED as a strategy to enhance both its optical and electrical properties. We find that plasmonic effects directly boost spontaneous emission while also influencing charge carrier recombination dynamics.

View Article and Find Full Text PDF

Visible Light-Induced, Persulfate-Promoted Synthesis of 2 Haloglycals from Glycals.

J Org Chem

September 2025

Department of Pharmaceutical Engineering & Technology, IIT-Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.

A visible light-driven, KSO-mediated one-step synthesis of 2-halo glycals has been reported, employing potassium salts as halogen source (KI, KBr, and KCl). Versatility of the proposed methodology to generate chloro-, bromo-, and iodo-substituted d-glycals containing both aliphatic and aromatic substitutions emphasizes the reproducibility of the methodology. The synthesized halogenated derivatives were subjected to Suzuki, Heck, and Sonogashira cross-coupling reactions, showcasing the utility of the halogenated derivatives for subsequent C-2 functionalization reactions of d-glycals.

View Article and Find Full Text PDF

Optoelectronic polymer memristors with dynamic control for power-efficient in-sensor edge computing.

Light Sci Appl

September 2025

State Key Laboratory of Flexible Electronics, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China.

As the demand for edge platforms in artificial intelligence increases, including mobile devices and security applications, the surge in data influx into edge devices often triggers interference and suboptimal decision-making. There is a pressing need for solutions emphasizing low power consumption and cost-effectiveness. In-sensor computing systems employing memristors face challenges in optimizing energy efficiency and streamlining manufacturing due to the necessity for multiple physical processing components.

View Article and Find Full Text PDF

Quantum imaging with spatially entangled photons offers advantages such as enhanced spatial resolution, robustness against noise, and counterintuitive phenomena, while a biphoton spatial aberration generally degrades its performance. Biphoton aberration correction has been achieved by using classical beams to detect the aberration source or scanning the correction phase on biphotons if the source is unreachable. Here, a new method named position-correlated biphoton Shack-Hartmann wavefront sensing is introduced, where the phase pattern added on photon pairs with a strong position correlation is reconstructed from their position centroid distribution at the back focal plane of a microlens array.

View Article and Find Full Text PDF