98%
921
2 minutes
20
Edge illumination (EI) is an established X-ray phase-contrast imaging method that relies on gratings to obtain attenuation, differential phase, and dark field contrast. Conventional gratings with one-dimensional line apertures, however, pose a major limitation in geometric flexibility of current EI-setups. That is, the gratings are designed for a fixed magnification and the period and aperture size of the gratings determine the fixed resolution. Changing the magnification can adjust the resolution, since the sample is projected over a smaller or larger detector area, but even a small change in magnification causes a mismatch between beamlets and pixels. To allow multi-resolution EI from a single experimental configuration, a grating which retains the projected period at different magnifications is required. In this paper, a trapezoidal grating that overcomes these limitations is studied using Monte Carlo and ray-tracing simulations, including a flat field experiment, a peak-to-peak contrast-to-noise ratio experiment, and EI scans of test phantoms. This simulation study demonstrates the concept of multi-resolution EI and shows its potential towards a generic and flexible EI setup.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.550252 | DOI Listing |
Chem Sci
September 2025
Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China
As a cutting-edge super-resolution imaging technique, structured illumination microscopy (SIM) has been widely used in cell biology research, especially in the analysis of subcellular organelles and monitoring of their dynamic processes. Through multiple illumination and reconstruction processes, SIM breaks through the resolution limitations of traditional microscopes and can observe the fine structures within cells in real time with nanoscale resolution. This provides strong technical support for in-depth analyses of molecular mechanisms, organelle functions, signaling networks, and metabolic regulatory pathways within cells.
View Article and Find Full Text PDFDalton Trans
September 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
Single-component white-light-emitters ensure color stability while reducing device complexity, and are ideal candidates for white light-emitting diodes (WLEDs). However, the realization of single-component white-light emission with high efficiency and stability is still a challenge. Herein, a supramolecular cation strategy was used to synthesize the organic-inorganic hybrid copper(I) halide [(AMTA)(18C6)]CuI (1), with AMTA = 1-adamantanamine and 18C6 = 18-crown-6.
View Article and Find Full Text PDFLight Sci Appl
September 2025
State Key Laboratory of Flexible Electronics, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China.
As the demand for edge platforms in artificial intelligence increases, including mobile devices and security applications, the surge in data influx into edge devices often triggers interference and suboptimal decision-making. There is a pressing need for solutions emphasizing low power consumption and cost-effectiveness. In-sensor computing systems employing memristors face challenges in optimizing energy efficiency and streamlining manufacturing due to the necessity for multiple physical processing components.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China. Electronic address:
The utilization of synergistic multivalent active sites holds potential in addressing the inherent sluggish kinetics of electrocatalytic reactions. Herein, we prepared au uNPs/Ni-NDC (NDC = 1,4-Naphthalenedicarboxylic acid) and leveraged the localized surface plasmon resonance (LSPR) effect to drive hot electron transfer from au nanoparticles to the Ni substrate, thereby generating multivalent active sites to boost the urea oxidation reaction (UOR). Under exciting light, au uNPs/Ni-NDC exhibited a twofold increase in UOR current accompanied by a significant negative shift in onset potential.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
September 2025
The spectacular success of training large models on extensive datasets highlights the potential of scaling up for exceptional performance. To deploy these models on edge devices, knowledge distillation (KD) is commonly used to create a compact model from a larger, pretrained teacher model. However, as models and datasets rapidly scale up in practical applications, it is crucial to consider the applicability of existing KD approaches originally designed for limited-capacity architectures and small-scale datasets.
View Article and Find Full Text PDF