98%
921
2 minutes
20
We demonstrate a simple and straightforward photonic crystal fiber (PCF) sensor for voltage and comparatively higher refractive index (RI) sensing, incorporating the surface plasmon resonance (SPR) phenomenon for better and more reliable performance. The sensor contains three air holes; the central air hole is filled with an electric field-tunable nematic liquid crystal (NLC), while the remaining holes are filled with the analyte. Due to changes in the surrounding voltages, the RI of NLC varies, and the sensor exhibits excellent sensitivity of 6 nm/V and a resolution of 16.67 mV in the voltage range of 200 V to 250 V. The sensor also demonstrates outstanding linearity performance. Additionally, the sensor is capable of RI detection in the sensing range of 1.45 to 1.50, which is rarely reported in the literature. In RI sensing, a sensor resolution of 4.00 × 10 RIU and a sensitivity of 25,000 nm/RIU are recorded across the sensing range. Furthermore, the sensor's performance is evaluated for different brain-injured tissues, showing excellent results in this application as well. Hence, it can be easily observed that the proposed sensor has the potential to perform well in both the power sector and the biosensing field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.563235 | DOI Listing |
Adv Sci (Weinh)
September 2025
Department of Chemistry, Gyeongsang National University, Jinju, 52828, South Korea.
Patchy nanoparticles (NPs) enable directional interactions and dynamic structural transformations, yet controlling polymeric patch formation with high spatial precision remains a significant challenge. Here, a thermally driven approach is presented to forming polystyrene (PS) patches on low-curvature facets of anisotropic gold nanocubes (NCs) using a single polymer component. Heating in DMF above 90 °C triggers selective desorption of PS chains from high-curvature edges and vertices via Au─S bond dissociation, followed by migration and deposition into rounded patches on flat surfaces.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
Integrating surface-enhanced fluorescence (SEF) and surface-enhanced Raman spectroscopy (SERS) into a single probe is a natural step forward for plasmon-enhanced spectroscopy (PES), as SEF enables enhanced fluorescent imaging for fast screening of targets, while SERS allows ultrasensitive trace molecular characterization with specificity. However, many challenges remain, e.g.
View Article and Find Full Text PDFMediators Inflamm
September 2025
Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
Mast cells (MCs) are effectors of anaphylactoid reactions. Mas-related G-protein-coupled receptor X2 (MRGPRX2) receptor mediates the direct activation of MCs in anaphylactoid disease. Siglec-6 negatively regulates MC activation and is a promising target in the development of antianaphylactoid reaction drugs.
View Article and Find Full Text PDFBiomater Res
September 2025
Laboratory of Medical Imaging, The First People's Hospital of Zhenjiang, Zhenjiang 212001, P. R. China.
Mesoporous metal nanomaterials (MMNs) have gained interest in biomedicine for their unique properties, but their potential is limited by the predominance of spherical shapes and the neglect of morphological effects on biological activity, which hinders the reasonable evaluation of morphology-dependent enzyme-like activities and biological behaviors and its further biomedical applications. It is therefore imperative to find an effective and facile method to design and prepare MMNs with novel, well-defined morphologies. Herein, we fabricated 3 mesoporous platinum nanoenzymes including sphere, rod, and bipyramid topologies [Au@mesoPt sphere, Au@mesoPt rod, and Au@mesoPt bipyramid nanoparticles (NPs), respectively] via a facile atomic layer deposition method using gold NPs (Au NPs) as the templated cores and Pluronic F127 as a structure-directing agent.
View Article and Find Full Text PDFAnalyst
September 2025
School of Information Science and Technology, Fudan University, 220 Handan Rd, Shanghai 200433, China.
Mercury(II) ions (Hg) are one of the most common and highly toxic heavy metal ions, which can contaminate the environment and damage the human health. Therefore, the precise detection of trace Hg concentration is particularly important. Herein, gold nanoparticles-enhanced silver-coated hollow fiber (HF) surface plasmon resonance (SPR) sensor was developed for the highly sensitive detection of Hg ions.
View Article and Find Full Text PDF