Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

N-methyl-D-aspartate receptors (NMDARs) are critical mediators of excitatory neurotransmission and are composed of seven subunits (GluN1, GluN2A-D, and GluN3A-B) that form diverse receptor subtypes. While GluN1/GluN2 subtypes have been extensively characterized and have led to approved therapeutics, the GluN1/GluN3A subtype remains underexplored despite emerging evidence of its involvement in neuropsychiatric disorders. Efficient identification of modulators requires accurate prediction of drug-target affinity (DTA), particularly for challenging targets such as GluN1/GluN3A. In this study, we applied the ImageDTA model, which is a multiscale 2D convolutional neural network (CNN), to virtually screen 18 million small molecules for GluN1/GluN3A inhibitors. This artificial intelligence (AI)-driven approach prioritized 12 compounds, three of which demonstrated potent inhibitory activity (IC₅₀ < 30 µM) in experimental validation. The most potent hit, with an IC of 4.16 ± 0.65 µM, revealed a novel structural scaffold, thus highlighting the potential of AI in accelerating drug discovery for underexplored receptor subtypes. These findings establish a robust framework for advancing GluN1/GluN3A-targeted therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41401-025-01630-7DOI Listing

Publication Analysis

Top Keywords

identification small-molecule
4
small-molecule inhibitors
4
glun1/glun3a
4
inhibitors glun1/glun3a
4
glun1/glun3a nmda
4
nmda receptors
4
receptors multiscale
4
multiscale cnn-based
4
cnn-based prediction
4
prediction model
4

Similar Publications

Motivation: The stability of protein interfaces influences protein dynamics and unfolding cooperativity. Although in some cases the dynamics of proteins can be deduced from their topology, much of the stability of an interface is related to the complementarity of the interacting parts. It is also important to note that proteins that display non-cooperative unfolding cannot be rationally stabilized unless the regions that unfold first are known.

View Article and Find Full Text PDF

On-DNA Binder Confirmation: Increasing Confidence in DEL Hits.

J Med Chem

September 2025

Encoded Technologies, Molecular Modalities Discovery, GSK, Cambridge, Massachusetts 02140, United States.

DNA-encoded libraries (DELs) are used throughout small-molecule drug discovery to identify new lead compounds for protein targets. DEL hits are traditionally evaluated via off-DNA resynthesis and subsequent biological testing. This approach can be time- and resource-intensive, limiting the number of putative hits selected for follow-up.

View Article and Find Full Text PDF

Diversity-Oriented C-H Activation Reactions of the Naphthalene Scaffold.

J Am Chem Soc

September 2025

Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.

Diversity-oriented synthesis (DOS) has emerged as an efficient strategy for constructing diverse compound libraries, facilitating hit or lead identification in the drug discovery process. In parallel, developing diverse transformations at different sites is an appealing strategy to expand the diversity of appendages on scaffolds. Owing to the availability of C-H bonds at multiple sites of pharmacophores, diversity-oriented C-H activation reactions are an ideal approach to realize this goal.

View Article and Find Full Text PDF

Methylmalonic acidemia (MMA) is a severe metabolic disorder affecting multiple organs because of a distal block in branched-chain amino acid (BCAA) catabolism. Standard of care is limited to protein restriction and supportive care during metabolic decompensation. Severe cases require liver/kidney transplantation, and there is a clear need for better therapy.

View Article and Find Full Text PDF

Cancer-associated fibroblasts as a potential therapeutic target for thyroid cancers.

Int J Surg

September 2025

BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.

Thyroid cancer, a prevalent endocrine malignancy, is influenced by its tumor microenvironment (TME), with cancer-associated fibroblasts (CAFs) playing a pivotal role in disease progression. Molecularly, CAFs orchestrate a pro-tumorigenic niche via cytokine secretion and extracellular matrix (ECM) stiffening, underscoring their targetability. Therapeutic strategies, including small molecule inhibitor-based therapies, immune-based therapies, nanoparticle-based approaches, and combination regimens, have been evaluated for their efficacy in disrupting CAF functionality.

View Article and Find Full Text PDF