98%
921
2 minutes
20
N-methyl-D-aspartate receptors (NMDARs) are critical mediators of excitatory neurotransmission and are composed of seven subunits (GluN1, GluN2A-D, and GluN3A-B) that form diverse receptor subtypes. While GluN1/GluN2 subtypes have been extensively characterized and have led to approved therapeutics, the GluN1/GluN3A subtype remains underexplored despite emerging evidence of its involvement in neuropsychiatric disorders. Efficient identification of modulators requires accurate prediction of drug-target affinity (DTA), particularly for challenging targets such as GluN1/GluN3A. In this study, we applied the ImageDTA model, which is a multiscale 2D convolutional neural network (CNN), to virtually screen 18 million small molecules for GluN1/GluN3A inhibitors. This artificial intelligence (AI)-driven approach prioritized 12 compounds, three of which demonstrated potent inhibitory activity (IC₅₀ < 30 µM) in experimental validation. The most potent hit, with an IC of 4.16 ± 0.65 µM, revealed a novel structural scaffold, thus highlighting the potential of AI in accelerating drug discovery for underexplored receptor subtypes. These findings establish a robust framework for advancing GluN1/GluN3A-targeted therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41401-025-01630-7 | DOI Listing |
Bioinformatics
September 2025
Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit GBsC-CSIC, University of Zaragoza, Zaragoza, 50018, Spain.
Motivation: The stability of protein interfaces influences protein dynamics and unfolding cooperativity. Although in some cases the dynamics of proteins can be deduced from their topology, much of the stability of an interface is related to the complementarity of the interacting parts. It is also important to note that proteins that display non-cooperative unfolding cannot be rationally stabilized unless the regions that unfold first are known.
View Article and Find Full Text PDFJ Med Chem
September 2025
Encoded Technologies, Molecular Modalities Discovery, GSK, Cambridge, Massachusetts 02140, United States.
DNA-encoded libraries (DELs) are used throughout small-molecule drug discovery to identify new lead compounds for protein targets. DEL hits are traditionally evaluated via off-DNA resynthesis and subsequent biological testing. This approach can be time- and resource-intensive, limiting the number of putative hits selected for follow-up.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.
Diversity-oriented synthesis (DOS) has emerged as an efficient strategy for constructing diverse compound libraries, facilitating hit or lead identification in the drug discovery process. In parallel, developing diverse transformations at different sites is an appealing strategy to expand the diversity of appendages on scaffolds. Owing to the availability of C-H bonds at multiple sites of pharmacophores, diversity-oriented C-H activation reactions are an ideal approach to realize this goal.
View Article and Find Full Text PDFJCI Insight
September 2025
Alice and Y. T. Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics.
Methylmalonic acidemia (MMA) is a severe metabolic disorder affecting multiple organs because of a distal block in branched-chain amino acid (BCAA) catabolism. Standard of care is limited to protein restriction and supportive care during metabolic decompensation. Severe cases require liver/kidney transplantation, and there is a clear need for better therapy.
View Article and Find Full Text PDFInt J Surg
September 2025
BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
Thyroid cancer, a prevalent endocrine malignancy, is influenced by its tumor microenvironment (TME), with cancer-associated fibroblasts (CAFs) playing a pivotal role in disease progression. Molecularly, CAFs orchestrate a pro-tumorigenic niche via cytokine secretion and extracellular matrix (ECM) stiffening, underscoring their targetability. Therapeutic strategies, including small molecule inhibitor-based therapies, immune-based therapies, nanoparticle-based approaches, and combination regimens, have been evaluated for their efficacy in disrupting CAF functionality.
View Article and Find Full Text PDF