A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Efficient estimating and clustering lithium-ion batteries with a deep-learning approach. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Growing energy storage demand has solidified the dominance of lithium-ion batteries (LIBs) in modern societies but intensifies recycling pressures. Precise state-of-health (SOH) assessment is crucial to grouping retired batteries from an unknown state for secondary utilization. However, batteries in the pack exhibit distinct capacity fading behaviors due to their service scenarios and working conditions. We develop a deep-learning framework for rapid, transferable SOH estimation and battery classification. This framework integrates deep neural networks with interconnected electrochemical, mechanical, and thermal features. Our model delivers optimal accuracy with a mean absolute error (MAE) of 0.822% and a root mean square error (RMSE) of 1.048% using combined features. It demonstrates robust performance across various conditions and enables SOH prediction with data from merely one previous cycle. Moreover, the well-trained model could adapt to other electrode systems with a minimal number of additional samples. This work highlights critical features for SOH estimation and enables efficient battery classification toward sustainable recycling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344010PMC
http://dx.doi.org/10.1038/s44172-025-00488-1DOI Listing

Publication Analysis

Top Keywords

lithium-ion batteries
8
soh estimation
8
battery classification
8
efficient estimating
4
estimating clustering
4
clustering lithium-ion
4
batteries
4
batteries deep-learning
4
deep-learning approach
4
approach growing
4

Similar Publications