98%
921
2 minutes
20
We theoretically investigate optical dispersion in twisted anisotropic materials, that is, when the optic axis undergoes a periodic modulation along the propagation axis while staying normal in the propagation direction. In the case of transversely homogeneous geometries, we show that both group velocity and group velocity dispersion can be largely tuned both in magnitude and sign by changing the medium anisotropy, the maximum rotation angle, the modulation period, and the input polarization. In doing that, we demonstrate to our knowledge a new type of optical spin-Hall effect occurring in the temporal domain. Our results introduce a new way to control the temporal profile of ultrashort pulses, automatically encompassing a structured polarization in time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.555188 | DOI Listing |
Phys Rev Lett
August 2025
University of Seoul, Physics Department, Seoul 02504, Korea.
We investigate the quasiparticles of a single nodal ring semimetal SrAs_{3} through axis-resolved magneto-optical measurements. We observe three types of Landau levels scaling as ϵ∼sqrt[B], ϵ∼B^{2/3}, and ϵ∼B that correspond to Dirac, semi-Dirac, and classical fermions, respectively. Through theoretical analysis, we identify the distinct origins of these three types of fermions present within the nodal ring.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Xiamen University, College of Physical Science and Technology, School of Electronic Science and Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Fujian Key Laboratory of Ultrafast Laser Technology and Applica
The photonic flat band, defined by minimal dispersion and near-zero group velocity, has facilitated significant advances in optical technologies. The practical applications of flat bands, such as enhanced light-matter interactions, require efficient coupling to far-field radiation. However, achieving controlled coupling between flat bands and their corresponding localized modes with far-field radiation remains challenging and elusive.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Università di Roma La Sapienza, Dipartimento di Fisica, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
We develop an ab initio framework that captures the impact of electron-electron and electron-hole interactions on phonon properties. This enables the inclusion of excitonic effects in the optical phonon dispersions and lifetimes of graphene, both near the center (Γ) and at the border (K) of the Brillouin zone, at phonon-momenta relevant for Raman scattering and for the onset of the intrinsic electrical resistivity. Near K, we find a phonon redshift of ∼150 cm^{-1} and a 10× enhancement of the group velocity, together with a 5× increase in linewidths due to a 26× increase of the electron-phonon matrix elements.
View Article and Find Full Text PDFInorg Chem
September 2025
Synthesis and Characterization of Innovative Materials, TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching b. München 85748, Germany.
Semiconductors with one-dimensional (1D) substructures are promising for next-generation optical and electronic devices due to their directional transport and flexibility. Representatives of this class include HgPbP-type materials. This study investigates the related semiconductors AgGeP and AgSnP.
View Article and Find Full Text PDFRSC Adv
September 2025
Laboratory of Spectroscopic Characterization and Optical Materials, Faculty of Sciences, University of Sfax B.P. 1171 3000 Sfax Tunisia
Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.
View Article and Find Full Text PDF