Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Imaging the living human eye requires high-speed and light-capture efficiency of photons returning from the eye to increase the signal-to-noise ratio while minimizing light exposure. Here, we report the optical design of a high-speed imaging approach applied to a line-scanning laser ophthalmoscope with extremely high optical efficiency. Utilizing the asymmetry involved in scanning a line through a slit pupil and collecting light scattered from a target with the full pupil, we construct an asymmetric scanning system, delivering essentially diffraction-limited performance while projecting almost all light from the source onto the target and collecting 98% of the light returning from the target onto the detector. This compares to traditional systems using beam splitters, which require powerful light sources to maximize light collection or balance illumination and detection efficiencies.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.557070DOI Listing

Publication Analysis

Top Keywords

light
6
maximizing light
4
light efficiency
4
efficiency high-speed
4
high-speed confocal
4
confocal line-scanning
4
line-scanning imagers
4
imagers imaging
4
imaging living
4
living human
4

Similar Publications

Novel 3d-printed Coaxial Light Microscope Adapter for Ophthalmic Wet Lab.

J Cataract Refract Surg

September 2025

Ophthalmology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.

Purpose: To compare the usability and training effectiveness of a 3D-printed coaxial illumination system mounted on an off-the-shelf stereo-microscope to a professional ophthalmic surgical microscope, in cataract surgery simulation.

Setting: Ophthalmology Lab, Ophthalmology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.

Design: Prospective randomized crossover study.

View Article and Find Full Text PDF

A screening of organic dyes has led to the discovery of gallocyanine as an organocatalyst for the halogenation of a variety of functionalized pyrazoles, indazoles, and aromatics. This work provides an example of a mild organocatalyst that does not require light, oxidizing agents, transition-metal activation, or high temperatures. Thirty-nine halogenated pyrazoles and indazoles, including pharmaceuticals such as celecoxib, deracoxib, and antipyrine, have been isolated in good to excellent yields using -halosuccinimides as the stoichiometric halogen source with gallocyanine as the catalyst.

View Article and Find Full Text PDF

Objective: To clarify the potential risks and causative mechanisms of glare from nighttime road fill lights on driving safety, this study investigates the dual interference of glare-induced visual cognitive load and physiological stress.

Methods: A field driving experiment involving 20 drivers was conducted, with real-time collection of visual data (e.g.

View Article and Find Full Text PDF

Incretin Signaling Neighborhoods and Adverse Drug Reactions.

Annu Rev Pharmacol Toxicol

September 2025

1Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden; email:

In light of the success of blockbuster drugs for type 2 diabetes and obesity based on the GLP-1 hormone, drugmakers have concentrated their efforts on developing new and improved variations that address the route of administration, dosing, pathway selectivity, or polypharmacology. While some of these modifications have demonstrated improved efficacy in clinical studies and offered exciting opportunities for treating other diseases, drug-induced shifts to the conformational landscape of target receptors may have consequences for side effects. Our review summarizes advances in the understanding of the biochemistry, pharmacogenomics, and molecular pharmacology of incretins and their cognate receptors.

View Article and Find Full Text PDF

Purpose: The monotonous lighting environment in extra-long tunnels often induces mind-wandering in drivers. To address this issue, this study explores effective strategies to optimize tunnel lighting environments by configuring various background colors and special lighting zones to enhance the alertness of young drivers and ensure driving safety.

Methods: A virtual driving simulator was utilized to carry out the experiment.

View Article and Find Full Text PDF