Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Proteins play indispensable roles in cellular function, acting as both structural components and catalysts for essential biological processes. Their proper folding into three-dimensional structures is critical for functionality. To ensure correct folding, proteins interact with chaperones and folding catalysts such as Protein Disulfide Isomerases (PDIs), which assist in the formation and rearrangement of disulfide bonds that stabilize proteins by linking cysteine residues. PDIs are part of the thioredoxin (TRX) superfamily and are characterized by a conserved CXXC motif that contributes to their redox potential. They exhibit isomerase and oxidoreductase activities, that enable them to rearrange and form new disulfide bonds. PDI family members in sorghum (SbPDI) present a broad and largely unexplored diversity in domain order, structure, and architecture between or even within species. To shed light on this diversity, we identified and characterized PDI family members in sorghum to explore their domain architecture, three-dimensional structure and functionality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337123PMC
http://dx.doi.org/10.1016/j.csbj.2025.07.035DOI Listing

Publication Analysis

Top Keywords

disulfide bonds
8
pdi family
8
family members
8
members sorghum
8
decoding pdi
4
pdi diversity
4
diversity insights
4
insights structure
4
structure domains
4
domains functionality
4

Similar Publications

As the primary storage protein, highland barley gliadin (HBG) exhibits limitations in the processing of highland barley foods, primarily due to its abundant non-polar amino acids. In this study, HBG was utilized to prepare sugar-HBG complexes with pentose (xylose), hexoses (glucose and galactose), and disaccharides (lactose and maltose) in an aqueous system at a pH of 11 and a temperature of 75 °C. Subsequently, the structural and functional characteristics of these complexes were evaluated.

View Article and Find Full Text PDF

Photothermal/GSH-dual-responsive organic quantum dots enabling traceable DNA delivery.

Int J Biol Macromol

September 2025

School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China. Electronic address:

Quantum dots, with their superior intrinsic fluorescence and photostability, are emerging as a promising option for cancer gene therapy, diagnosis, and imaging. However, low gene delivery efficiency, insufficient targeting, and responsiveness remain challenges. To address these issues, PEI-based carbon quantum dots (CPNCs) were constructed by crosslinking polyethylenimine quantum dots (PQDs) with carbon quantum dots (CQDs) via disulfide bonds.

View Article and Find Full Text PDF

Meat protein microgels assembled under various temperature-concentration conditions: Underlying its interfacial behavior.

Food Chem

September 2025

State Key Laboratory of Meat Quality Control and Cultured Meat Development; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:

At moderate protein concentrations (10, 20 mg/mL) and a high temperature (80 °C), meat protein (MP) self-assembled into weak gels and then intriguingly collapsed into microgels through continuous heating and annealing cooling, resulting in a sol state with exposed hydrophobic groups and disulfide bonds. The different prepared microgel groups were labeled as MP and MP, respectively. Compared with the control group (Con: 7.

View Article and Find Full Text PDF

Objective: This study investigated the locations of amino acid modifications within two major human hair keratins (Type I K31 and Type II K85) with probable implications for protein and hair structural component integrity. The particular focus was on cysteine modifications that disrupt intra-protein and inter-protein disulphide bonds.

Methods: Human hair was exposed to accelerated, sequential heat or UV treatments, simulating effects resulting from the use of heated styling tools and environmental exposure over a time frame approximating one year.

View Article and Find Full Text PDF

A Bifunctional Chiral Disulfide Catalyst for Highly Enantioselective Anti-Markovnikov Hydrophosphinylation.

J Am Chem Soc

September 2025

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

By the strategic integration of squaramide with amino acid derivatives, a type of modular H-bonding catalyst for the enantioselective hydrogen atom transfer (HAT) process was developed. With these disulfides, a photoinduced asymmetric anti-Markovnikov hydrophosphinylation was achieved, providing a series of chiral -hydroxyphosphine oxides with reasonable to high enantioselectivity. Mechanism studies revealed the critical role of the H-bonding interactions between the squaramide scaffold and radical intermediates in governing the enantioselectivity and catalytic reactivity.

View Article and Find Full Text PDF