98%
921
2 minutes
20
Background: Glioma, particularly glioblastoma, is a highly aggressive brain tumor with poor prognosis and limited treatment options. Recent research highlights the role of MANF (Mesencephalic Astrocyte Derived Neurotrophic Factor) in tumor biology, yet its specific mechanisms in glioma remain underexplored. This study aims to elucidate the role of MANF in glioma and its underlying mechanisms of action.
Methods: We conducted bioinformatics analysis using TCGA data to identify MANF-related pathways, followed by cellular assays and subcutaneous tumor models for functional validation. Experiments included Western blot and qRT-PCR analysis to investigate the effects of MANF on glioma cell proliferation, migration, and stemness gene expression.
Results: MANF was found to be highly expressed in tumor tissues and associated with poor prognosis in glioma patients. Endogenous MANF regulates tumor cells by modulating the TGF-β/SMAD4/p38 pathway, promoting stemness and enhancing malignant behaviors, including migration and invasion. Exogenous MANF, however, did not significantly affect stemness gene expression but contributed to glioma cell proliferation.
Conclusions: MANF emerges as a promising therapeutic target for glioma. This study clarifies MANF's specific mechanisms, offering insights into its potential for targeted glioma therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357261 | PMC |
http://dx.doi.org/10.1016/j.tranon.2025.102497 | DOI Listing |
Front Immunol
September 2025
Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Gliomas are the most common primary malignant tumors of the central nervous system (CNS), and despite progress in molecular diagnostics and targeted therapies, their prognosis remains poor. In recent years, immunotherapy has emerged as a promising treatment modality in cancer therapy. However, the inevitable immune evasion by tumor cells is a key barrier affecting therapeutic efficacy.
View Article and Find Full Text PDFiScience
September 2025
Department of Molecular Pathology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, QingDao, Shandong 266300, China.
Gliomas are common primary brain tumors in the central nervous system, characterized by invasiveness, heterogeneity, and drug resistance, posing a threat to patients' lives. Glioblastoma (IDH wild-type) exhibits the highest invasiveness and mortality rate, making it a challenging therapeutic target. This review first outlines the characteristics of gliomas and their impact on the nervous system, then explores the pathological mechanisms and unique behaviors of glioblastoma (IDH wild-type), as well as the influence of the nervous system on its occurrence and progression.
View Article and Find Full Text PDFFront Oncol
August 2025
Department of Neurosurgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, China.
Background: The objective of this study is to investigate the predictive role of O6-methylguanine-DNA methyltransferase (MGMT) and isocitrate dehydrogenase (IDH) status on the efficacy of bevacizumab (BEV) in high-grade glioma (HGG), while excluding the interference of chemotherapy agents.
Methods: A retrospective, single-center analysis was conducted on 103 patients with HGG who received BEV treatment. The enrolled patients were grouped based on their different biomarker statuses.
Biochem Biophys Rep
June 2025
The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
Background: SLC16A3, a highly expressed H + -coupled symporter, facilitates lactate transport via monocarboxylate transporters (MCTs), contributing to acidosis. Although SLC16A3 has been implicated in tumor development, its role in tumor immunity remains unclear.
Methods: A pan-cancer analysis was conducted using datasets from The Cancer Genome Atlas, Cancer Cell Line Encyclopedia, and Genotype-Tissue Expression projects.
Chemistry
September 2025
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
One of the most difficult issues facing humanity today is the treatment of cancer. A binary cancer treatment called boron neutron capture therapy (BNCT) works especially well for high-grade gliomas and metastatic brain malignancies. Due to their preferential absorption by developing tumor cells, boronated amino acids have drawn a lot of attention among the several boron-containing compounds utilized as BNCT agents.
View Article and Find Full Text PDF