98%
921
2 minutes
20
Sodium (Na) storage in hard carbon (HC) is a fundamental electrochemical process for sodium-ion batteries, where adsorption energy critically influences charge/discharge rates and storage capacity. Accurate prediction of this energy is essential for designing of high-performance HC. Traditional quantum mechanical simulations often neglect charge effects from electrochemical potentials, leading to inaccurate adsorption energies and discrepancies with experiments. Here, we demonstrate that potential-driven charge effects play a pivotal role in governing Na storage under realistic conditions. To address this, we develop a charge-dependent computational model (CDM) that explicitly incorporates potential-induced charge dynamics. Using flat carbon layers as a model, we show that charge effects significantly influence the identification of active Na-storage sites and induce sodiation/desodiation voltage shifts exceeding 1.1 V relative to conventional charge-neutral models. These effects originate from distinct chemical reactivities between neutral and charged carbon. When extended to curved and defect-rich carbon-hallmarks of HC-CDM accurately predicts storage sites and voltage-capacity profiles that closely match experimental data. This work resolves long-standing theory-experiment inconsistencies and provides a powerful framework for designing next-generation sodium-ion batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202512830 | DOI Listing |
J Phys Chem A
September 2025
Department of Chemistry, Institute for Quantum Information Research and Engineering, and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113, United States.
Light-driven formation of radical ion pairs that occurs much faster than their electron spin dynamics results in correlated spins whose coherence properties can be used as a quantum-based electric field sensor. This results from the radical ion pair having charge and spin distributions that track one another. Thus, electric field induced changes in the distance between the two charges are reflected in the spin-spin distance that can be measured directly using out-of-phase electron spin echo envelope modulation (OOP-ESEEM), a pulse-EPR technique.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
The development of high-performance, cost-effective non-noble metal catalysts for the oxygen evolution reaction (OER) is critical to advancing sustainable hydrogen production via water electrolysis. Herein, we report a facile and mild strategy for synthesizing amorphous bimetallic organic framework materials (NiFe-MOFs) using pyridine-modified threonine (l-PyThr) as an organic ligand. The optimized NiFe-PyThr-4:1 catalyst exhibits remarkable OER activity, requiring low overpotentials of only 162 and 222 mV to achieve current densities of 10 and 100 mA cm, respectively, along with a small Tafel slope of 34.
View Article and Find Full Text PDFElife
September 2025
Department of Chemistry, University of Massachusetts, Amherst, United States.
Voltage-dependence gating of ion channels underlies numerous physiological and pathophysiological processes, and disruption of normal voltage gating is the cause of many channelopathies. Here, long timescale atomistic simulations were performed to directly probe voltage-induced gating transitions of the big potassium (BK) channels, where the voltage sensor domain (VSD) movement has been suggested to be distinct from that of canonical Kv channels but remains poorly understood. Using a Core-MT construct without the gating ring, multiple voltage activation transitions were observed at 750 mV, allowing detailed analysis of the activated state of BK VSD and key mechanistic features.
View Article and Find Full Text PDFLangmuir
September 2025
School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China.
Electrochemical sensors capable of detecting different types of biomolecules using a single electrode are highly desirable for simplifying analytical platforms and expanding their practical applicability. Herein, we develop a multifunctional electrochemical sensor based on a 3D honeycomb-like porous rGO/PPy-POM composite film for the independent detection of dopamine (DA) and folic acid (FA), two chemically distinct and clinically relevant biomolecules. The electrode is fabricated through a facile, low-cost, and environmentally friendly breath figure method to create a 3D porous reduced graphene oxide (rGO) framework, followed by codeposition of polypyrrole (PPy) and polyoxometalates (POMs).
View Article and Find Full Text PDFMacromol Biosci
September 2025
Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey.
The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has highlighted the critical need for safe and effective vaccines. In this study, subunit nanovaccine formulations were developed using the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein encapsulated in polymeric nanoparticles composed of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL). Two surfactants, poly(vinyl alcohol) (PVA) and sodium cholate (SC), were evaluated during formulation via a modified water-in-oil-in-water (w/o/w) emulsion-solvent evaporation method.
View Article and Find Full Text PDF