Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Clusterin (apolipoprotein J), a conserved glycoprotein abundant in blood and cerebrospinal fluid, functions as a molecular chaperone and apolipoprotein. Dysregulation of clusterin is linked to late-onset Alzheimer disease. Despite its prominent role in extracellular proteostasis, the mechanism of clusterin function remained unclear. Here, we present crystal structures of human clusterin, revealing a discontinuous three-domain architecture. Structure-based mutational analysis demonstrated that two disordered, hydrophobic peptide tails enable diverse activities. Resembling the substrate-binding regions of small heat-shock proteins, these sequences mediate clusterin's chaperone function in suppressing amyloid-β, tau and α-synuclein aggregation. In conjunction with conserved surface areas, the tail segments also participate in clusterin binding to cell surface receptors and cellular uptake. While contributing to lipoprotein formation, the hydrophobic tails remain accessible for chaperone function in the lipoprotein complex. The remarkable versatility of these sequences allows clusterin to function alone or bound to lipids in maintaining the solubility of aberrant extracellular proteins and facilitating their clearance by endocytosis and lysosomal degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41594-025-01631-4DOI Listing

Publication Analysis

Top Keywords

chaperone function
12
clusterin function
8
clusterin
7
function
5
structural analyses
4
analyses define
4
define molecular
4
molecular basis
4
basis clusterin
4
chaperone
4

Similar Publications

Targeting protein misfolding in Alzheimer's disease: The emerging role of molecular chaperones.

Biomed Pharmacother

September 2025

Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma 378, Ethiopia; Division of Research & Development, Lovely Professional University, Phagwara 144411, India. Electronic address:

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by cognitive decline and the accumulation of misfolded proteins, including amyloid-beta and hyperphosphorylated tau, which impair neuronal function and promote cell death. These misfolded proteins disrupt proteostasis by forming toxic aggregates that exacerbate disease progression. Molecular chaperones, such as heat shock proteins, actively maintain protein homeostasis by assisting in proper folding, preventing aggregation, and promoting the clearance of misfolded proteins.

View Article and Find Full Text PDF

Introduction: Spinal muscular atrophy (SMA), caused by pathogenic variants in the survival motor neuron (SMN) gene, is the most common genetic cause of mortality in children under the age of two. Prior reports of obstetric sonograms performed in pregnancies with severe forms of fetal SMA have discrepant findings that may stem from a failure to account for the SMN2 copy number.

Methods: We present a neonate diagnosed with SMA type 0 postnatally (0SMN1/1SMN2 genotype).

View Article and Find Full Text PDF

Intracellular trafficking of secretory and membrane proteins from the endoplasmic reticulum (ER) to the cell surface, via the secretory pathway, is crucial to the differentiated function of epithelial tissues. In the thyroid gland, a prerequisite for such trafficking is proper protein folding in the ER, assisted by an array of ER molecular chaperones. One of the most abundant of these chaperones, Glucose-Regulated-Protein-170 (GRP170, encoded by Hyou1), is a noncanonical hsp70-like family member.

View Article and Find Full Text PDF

Chromatin remodeling and transcriptional reprogramming play critical roles during mammalian meiotic prophase I; however, the precise mechanisms regulating these processes remain poorly understood. Our previous work demonstrated that deletion of heat shock factor 5 (HSF5), a member of the heat shock factor family, induces meiotic arrest and male infertility. However, the molecular pathways through which HSF5 governs meiotic progression have not yet been fully elucidated.

View Article and Find Full Text PDF

Evolution and function of heat shock protein 90 in economic shellfish: A review.

Dev Comp Immunol

September 2025

Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China. Electronic address:

The phylum Mollusca is one of the most diverse groups, second only to arthropods, whose production through aquaculture and wild capture is increasing due to its nutritional and economic values, especially its protein availability for human consumption. However, the negative influence caused by pathogen infection and environmental challenges has led to low aquaculture productivity and economic losses for shellfish farmers. Heat shock proteins, as molecular chaperones, contribute to the folding of nascent proteins, environmental adaptation, the immune response, etc.

View Article and Find Full Text PDF