Hierarchically aligned reduced graphene oxide/MXene foam enabling Marangoni-driven salt-resistant desalination via bidirectional ion reflux.

J Colloid Interface Sci

Shandong Key Laboratory of Special Epoxy Resin, School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China. Electronic address:

Published: December 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Interfacial solar desalination has emerged as a sustainable pathway for treating high-salinity brines, but the non-equilibrium phase transition at the evaporation frontier inevitably induces self-amplifying crystallization to reduce purification efficiency. Herein, a hierarchically aligned reduced graphene oxide/MXene (Mr) foam is fabricated to optimize ion transport channels while reducing optical scattering interfaces that enhance solar energy utilization. The aligned layered structure with interconnected anisotropic microchannels is built under dual temperature gradients with the ice crystal exclusion, which significantly shortens the water transport path and facilitates diffusion and reflux of salt ions. The finite element simulations validate the exceptional photon-to-thermal energy efficiency of Mr foam coupled with inherently low thermal conductivity, synergistically suppressing heat dissipation through thermal localization strategy. The steep thermal gradient originating from the liquid-vapor interface propagates through the subsurface aqueous phase, establishing a localized surface tension differential that activates spontaneous Marangoni convection currents, which drives self-sustaining hydrodynamic patterns to suppress salt accumulation. Consequently, the Mr foam achieves a water evaporation rate of 2.04 kg m h under 1 sun irradiation. Importantly, it maintains a stable evaporation rate of 1.76 kg m h over 100 h in 25 wt% NaCl solution, which demonstrates a great potential for efficient and long-term solar desalination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2025.138617DOI Listing

Publication Analysis

Top Keywords

hierarchically aligned
8
aligned reduced
8
reduced graphene
8
graphene oxide/mxene
8
oxide/mxene foam
8
solar desalination
8
evaporation rate
8
foam
4
foam enabling
4
enabling marangoni-driven
4

Similar Publications

Computed Tomography (CT) to Cone-Beam Computed Tomography (CBCT) image registration is crucial for image-guided radiotherapy and surgical procedures. However, achieving accurate CT-CBCT registration remains challenging due to various factors such as inconsistent intensities, low contrast resolution and imaging artifacts. In this study, we propose a Context-Aware Semantics-driven Hierarchical Network (referred to as CASHNet), which hierarchically integrates context-aware semantics-encoded features into a coarse-to-fine registration scheme, to explicitly enhance semantic structural perception during progressive alignment.

View Article and Find Full Text PDF

Background: Conventional automated writing evaluation systems typically provide insufficient support for students with special needs, especially in tonal language acquisition such as Chinese, primarily because of rigid feedback mechanisms and limited customisation.

Objective: This research develops context-aware Hierarchical AI Tutor for Writing Enhancement(CHATWELL), an intelligent tutoring platform that incorporates optimised large language models to deliver instantaneous, customised, and multi-dimensional writing assistance for Chinese language learners, with special consideration for those with cognitive learning barriers.

Methods: CHATWELL employs a hierarchical AI framework with a four-tier feedback mechanism designed to accommodate diverse learning needs.

View Article and Find Full Text PDF

Background: Mindfulness meditation (MM), originating from spiritual traditions but widely promoted as a secular and beneficial practice, is increasingly debated due to potential adverse effects, ethical concerns, and its ties with neoliberal imperatives, challenging its image as a universal remedy. Beliefs about MM strongly influence its reception, usage, and effects but remain understudied, especially in comparing meditators and non-meditators. Understanding these beliefs is key to clarifying how lay perceptions align or diverge from scientific frameworks and to grasp individuals' expectations and motivations, notably in clinical contexts.

View Article and Find Full Text PDF

Hierarchical nanotopographies and fractal fingerprints of Anopheles mosquito wing surfaces.

Micron

September 2025

Laboratório de Desenvolvimento e Aplicações de Nanomateriais da Amazônia (LADENA), Departamento de Física de Materiais, Universidade Federal do Amazonas, Manaus, AM 69067-005, Brazil. Electronic address:

This study investigates the nanoscale surface morphology of Anopheles darlingi and Anopheles aquasalis mosquito wings using Atomic Force Microscopy (AFM) and fractal analysis. High-resolution 3D AFM imaging revealed pronounced inter- and intra-species differences, with the ventral surface of An. darlingi (V-Ad) exhibiting the greatest roughness (Sq = 45.

View Article and Find Full Text PDF

We present a novel computational model employing hierarchical active inference to simulate reading and eye movements. The model characterizes linguistic processing as inference over a hierarchical generative model, facilitating predictions and inferences at various levels of granularity, from syllables to sentences. Our approach combines the strengths of large language models for realistic textual predictions and active inference for guiding eye movements to informative textual information, enabling the testing of predictions.

View Article and Find Full Text PDF