This study investigates the nanoscale surface morphology of Anopheles darlingi and Anopheles aquasalis mosquito wings using Atomic Force Microscopy (AFM) and fractal analysis. High-resolution 3D AFM imaging revealed pronounced inter- and intra-species differences, with the ventral surface of An. darlingi (V-Ad) exhibiting the greatest roughness (Sq = 45.
View Article and Find Full Text PDFRiver basins in Odisha suffer from serious anthropogenic interventions that degrade water quality, including runoff from agriculture, municipal wastewater, and industrial discharges. The Brahmani River, an essential source of water for industrial, agricultural, and drinking uses, is especially affected by overuse of fertilizer and pesticides. Ensuring health and cleanliness in cities and communities requires constant monitoring and management of drinking water sources.
View Article and Find Full Text PDFSurface water is used for a variety of purposes, including agriculture, drinking water, and other services. Therefore, its quality is crucial for irrigation, human welfare, and health. Thus, the main objective is to improve surface water quality assessment and geochemical analysis to evaluate anthropogenic activities' impact on surface water quality in the Brahmani Watershed, Odisha.
View Article and Find Full Text PDFMicrosc Res Tech
February 2023
In this study, the morphological properties and micro-roughness of chromium thin film prepared by thermal evaporation technique and confirmed via EDS analysis are examined on different substrates of BK7, Silicon (Si), and glass using atomic force microscope analysis (AFM). Analysis of amplitude parameters, Minkowski functionals, and films' spatial microtexture extracted from AFM analysis showed the difference between glass substrate and the other two (BK7 and Si) substrates for the growth of chromium thin films. In addition, we observed robust signatures of multifractality of the Cr thin films deposited on all substrates we studied.
View Article and Find Full Text PDFA study of image analysis of Ti Al N films deposited on corning glass substrates by a direct current (DC)/radio frequency (RF) magnetron sputtering system was performed. Atomic force microscopy (AFM) data were studied to understand how the impact of the concentration of Al content influences the 3D surface morphology as well as the surface texture parameters. The results showed that the superficial morphology was modified by the increase of Al content in the Ti Al N films, as well as the surface microtexture.
View Article and Find Full Text PDF