Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Efficient methods for solving the Fokker-Planck (FP) equation are crucial for studying stochastic systems. This paper proposes a transfer learning method to solve the FP equation, enabling the training process to proceed without starting from the beginning. The equivalent linearization is first applied to unify a class of stochastic differential equations into a single simplified form. Subsequently, a pre-trained neural network framework, inspired by transfer learning, is designed based on the FP equation of the simple system. By leveraging the pre-trained neural network, the solving process is accelerated by starting from a more advanced state. Finally, numerical experiments are conducted to verify the proposed approach, including one- and two-dimensional stochastic systems as well as a system driven by both Gaussian and Lévy noise. Results show that the contours of the FP equations can be learned by the network very expeditiously, greatly reducing training time while maintaining accuracy. The proposed method not only improves computational efficiency but also demonstrates strong generalization capabilities.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0260624DOI Listing

Publication Analysis

Top Keywords

transfer learning
12
learning method
8
method solve
8
fokker-planck equation
8
equivalent linearization
8
stochastic systems
8
pre-trained neural
8
neural network
8
solve fokker-planck
4
equation
4

Similar Publications

Preclinical stroke research faces a critical translational gap, with animal studies failing to reliably predict clinical efficacy. To address this, the field is moving toward rigorous, multicenter preclinical randomized controlled trials (mpRCTs) that mimic phase 3 clinical trials in several key components. This collective statement, derived from experts involved in mpRCTs, outlines considerations for designing and executing such trials.

View Article and Find Full Text PDF

Background: Subcellular localisation is a determining factor of protein function. Mass spectrometry-based correlation profiling experiments facilitate the classification of protein subcellular localisation on a proteome-wide scale. In turn, static localisations can be compared across conditions to identify differential protein localisation events.

View Article and Find Full Text PDF

To address the technical challenges associated with determining the chronological order of overlapping stamps and textual content in forensic document examination, this study proposes a novel non-destructive method that integrates hyperspectral imaging (HSI) with convolutional neural networks (CNNs). A multi-type cross-sequence dataset was constructed, comprising 60 samples of handwriting-stamp sequences and 20 samples of printed text-stamp sequences, all subjected to six months of natural aging. Spectral responses were collected across the 400-1000 nm range in the overlapping regions.

View Article and Find Full Text PDF

Oral cancer is a major global health burden, ranking sixth in prevalence, with oral squamous cell carcinoma (OSCC) being the most common type. Importantly, OSCC is often diagnosed at late stages, underscoring the need for innovative methods for early detection. The oral microbiome, an active microbial community within the oral cavity, holds promise as a biomarker for the prediction and progression of cancer.

View Article and Find Full Text PDF

Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).

View Article and Find Full Text PDF