98%
921
2 minutes
20
This dataset presents a comprehensive collection of microscopic images, infrared (IR) spectra of particles obtained from beach sediment in Tioman Island, Malaysia. Sediment samples were collected from multiple sites across three selected beaches to identify material composition and assess the concentration of plastic particles, including both microplastics (<5 mm) and macroplastics (>5 mm), in the region. The IR spectroscopic analysis was carried out in the mid-infrared range (4000-370 cm⁻¹), enabling detailed vibrational characterization of compounds present in the samples. By integrating multiple spectroscopic techniques and vibrational calculations, this dataset provides a valuable resource for environmental monitoring, microplastic pollution studies, and material identification in marine ecosystems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12329221 | PMC |
http://dx.doi.org/10.1016/j.dib.2025.111907 | DOI Listing |
Pathol Res Pract
September 2025
Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China. Electronic address:
Background: Dermal clear cell sarcoma (DCCS) is a rare malignant mesenchymal neoplasm. Owing to the overlaps in its morphological and immunophenotypic profiles with a broad spectrum of tumors exhibiting melanocytic differentiation, it is frequently misdiagnosed as other tumor entities in clinical practice. By systematically analyzing the clinicopathological characteristics, immunophenotypic features, and molecular biological properties of DCCS, this study intends to further enhance pathologists' understanding of this disease and provide a valuable reference for its accurate diagnosis.
View Article and Find Full Text PDFJ Cataract Refract Surg
September 2025
Ophthalmology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.
Purpose: To compare the usability and training effectiveness of a 3D-printed coaxial illumination system mounted on an off-the-shelf stereo-microscope to a professional ophthalmic surgical microscope, in cataract surgery simulation.
Setting: Ophthalmology Lab, Ophthalmology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.
Design: Prospective randomized crossover study.
Pol Merkur Lekarski
September 2025
BUKOVINIAN STATE MEDICAL UNIVERSITY, CHERNIVTSI, UKRAINE.
Objective: Aim: To find out new objective criteria for laser histological differential diagnosis of thyroid pathology based on the use of a digital method of layer-by-layer polarization-interference mapping of polarization ellipticity maps of microscopic images of native histological sections of thyroid biopsy.
Patients And Methods: Materials and Methods: Four groups of patients were studied: control group 1 - healthy donors (51 patients); study group 2 - patients with nodular goiter (51 patients); study group 3 - patients with autoimmune thyroiditis (51 patients); study group 4 - patients with papillary cancer (51 patients). Methods used: polarization-interference, statistical.
J Am Chem Soc
September 2025
Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.
Coherent electron spin states within paramagnetic molecules hold significant potential for microscopic quantum sensing. However, all-optical coherence measurements amenable to high spatial and temporal resolution under ambient conditions remain a significant challenge. Here we conduct room-temperature, picosecond time-resolved Faraday ellipticity/rotation (TRFE/R) measurements of the electron spin decoherence time in [IrBr].
View Article and Find Full Text PDFJ Synchrotron Radiat
November 2025
Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA.
Nano-laminography combines the penetrating power of hard X-rays with a tilted rotational geometry to deliver high-resolution, three-dimensional images of laterally extended, flat specimens that are otherwise incompatible with, or difficult to image using, conventional nano-tomography. In this work, we demonstrate a full-field, X-ray nano-laminography system implemented with the transmission X-ray microscope at beamline 32-ID of the upgraded Advanced Photon Source at Argonne National Laboratory, USA. By rotating the sample around an axis inclined by 20° to the incident beam, the technique minimizes the long optical path lengths that would otherwise generate excessive artifacts when planar samples are imaged edge-on.
View Article and Find Full Text PDF