A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A special machine for solving NP-complete problems. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A specialized computer named as the Electronic Probe Computer (EPC) has been developed to address large-scale NP-complete problems. The EPC employs a hybrid serial/parallel computational model, structured around four main subsystems: a converting system, an input/output system, and an operating system. The converting system is a software component that transforms the target problem into the graph coloring problem, while the operating system is designed to solve these graph coloring challenges. Comprised of 60 probe computing cards, this system is referred to as EPC60. In tackling large-scale graph coloring problems with EPC60, 100 3-colorable graphs were randomly selected, each consisting of 2,000 vertices. The state-of-the-art mathematical optimization solver achieved a success rate of only 6%, while EPC60 excelled with a remarkable 100% success rate. Additionally, EPC60 successfully solved two 3-colorable graphs with 1,500 and 2,000 vertices, which had eluded Gurobi's attempts for 15 days on a standard workstation. Given the mutual reducibility of NP-complete problems in polynomial time theoretically, the EPC stands out as a universal solver for NP-complete problem. The EPC can be applied to various problems that can be abstracted as combinatorial optimization issues, making it relevant across multiple domains, including supply chain management, financial services, telecommunications, energy systems, manufacturing, and beyond.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12327857PMC
http://dx.doi.org/10.1016/j.fmre.2025.05.010DOI Listing

Publication Analysis

Top Keywords

np-complete problems
12
graph coloring
12
converting system
8
operating system
8
3-colorable graphs
8
2000 vertices
8
success rate
8
system
6
problems
5
special machine
4

Similar Publications