A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

LncRNA-driven programmed cell death networks: new therapeutic targets for neurological disorders. | LitMetric

LncRNA-driven programmed cell death networks: new therapeutic targets for neurological disorders.

Front Mol Neurosci

Department of Pediatric Intensive Care Unit, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neural cell death is a critical pathological mechanism underlying the development and progression of central nervous system (CNS) diseases, where programmed cell death (PCD) pathways serve as critical regulatory hubs. In addition to classical apoptosis and autophagy, emerging PCD modalities including necroptosis, pyroptosis, ferroptosis, and cuproptosis exhibit distinct activation patterns in different neurological diseases. Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of these PCD processes through multiple molecular strategies by modulating chromatin accessibility, assembling signaling complexes, and regulating post-transcriptional processes. These regulatory interactions vary by cellular location and disease stage, influencing cell fate through membrane receptors, kinase cascades, and nuclear transcriptional programs. In various CNS pathologies, specific lncRNAs display dual regulatory capacities-promoting neuronal death by amplifying cytotoxic signals or conferring neuroprotection by inhibiting these pathways. The dynamic lncRNA-PCD interactions offer therapeutic potential through targeted modulation of lncRNA networks to control neuronal survival. Future investigations should prioritize systematic mapping of context-specific lncRNA regulatory networks governing distinct PCD modalities, concurrently advancing spatial epigenomic editing technologies for precise manipulation of these regulatory circuits. Understanding these molecular interactions better will help identify therapeutic targets and guide CNS drug development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12328288PMC
http://dx.doi.org/10.3389/fnmol.2025.1635119DOI Listing

Publication Analysis

Top Keywords

cell death
12
programmed cell
8
therapeutic targets
8
pcd modalities
8
regulatory
5
lncrna-driven programmed
4
cell
4
death
4
death networks
4
networks therapeutic
4

Similar Publications