Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Alzheimer's disease (AD) is responsible for more than 80% of cases of dementia in senior individuals globally. In the current study, the role of modulation of the FGF1/PI3K/Akt pathway in the protective effect of tozasertib was evaluated. Experimental dementia was induced in mice by injecting streptozotocin (STZ) intracerebroventricularly. Various biochemical parameters for oxidative stress & lipid peroxidation (SOD, GSH, catalase, TBARS), neuroinflammation (MPO, IL-6, IL-1 β, TNF-α, NFκB), apoptotic markers (Bax, Bcl-2, Caspase-3), and memory parameters (AChE activity, β1-40 levels) were assessed. The behavioral parameters evaluated included the Morris Water Maze test and the step-down passive avoidance test. Histological changes were assessed using H&E staining. ICV STZ-induced AD resulted in increased oxidative stress, lipid peroxidation, neuroinflammation, apoptosis, and decreased learning and memory. The results showed that administration of tozasertib improved memory, decreased levels of oxidative stress, inflammatory parameters, and apoptotic markers, and improved histological parameters in a dose-dependent manner. Pre-administration of LY294002, a PI3K/Akt pathway inhibitor, partially reversed the protective effects of Tozasertib, suggesting possible involvement of this pathway. However, as the mechanism was inferred primarily through pharmacological antagonism, further studies including direct molecular assessments (e.g. p-Akt/t-Akt) are warranted to confirm the role of FGF1/PI3K/Akt signaling in Tozasertib's action.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12332071 | PMC |
http://dx.doi.org/10.1038/s41598-025-13920-5 | DOI Listing |