98%
921
2 minutes
20
Bilayer graphene (BLG)-based quantum devices represent a promising platform for emerging technologies, such as quantum computing and spintronics. However, their intrinsically weak spin-orbit coupling (SOC) complicates spin and valley manipulation. Integrating BLG with transition metal dichalcogenides (TMDs) enhances the SOC via proximity effects. While this enhancement has been demonstrated in 2D-layered structures, 1D and 0D nanostructures in BLG/TMD remain unrealized, with open questions regarding SOC strength and tunability. Here, we investigate quantum point contacts and quantum dots in two BLG/WSe heterostructures with different stacking orders. Across multiple devices, we reproducibly demonstrate spin-orbit splitting up to 1.5 meV─more than 1 order of magnitude higher than in pristine BLG. Furthermore, we show that the induced SOC can be tuned in situ from its maximum value to near-complete suppression via the perpendicular electric field. This enhancement and in situ tunability establish the SOC as a control mechanism for dynamic spin and valley manipulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12371879 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.5c02309 | DOI Listing |
Nano Lett
September 2025
Key Laboratory of Micro & Nano Photonic Structures, Department of Optical Science and Engineering, College of Future Information Technology, Fudan University, Shanghai 200433, China.
The separation and propagation of spin are vital to understanding spin-orbit coupling (SOC) in quantum systems. Exciton-polaritons, hybrid light-matter quasiparticles, offer a promising platform for investigating SOC in quantum fluids. By utilization of the optical anisotropy of materials, Rashba-Dresselhaus SOC (RDSOC) can be generated, enabling robust polariton spin transport.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China.
The photophysical properties of two new Bodipy dimers are investigated using a variety of techniques, including steady-state UV-vis absorption and fluorescence spectroscopy, femtosecond and nanosecond transient absorption spectroscopy, and pulse laser-excited time-resolved electron paramagnetic resonance (TREPR) spectroscopic methods. The dimers are formed by the Bodipy units rigidly linked by the orthogonal phenylene bridge. One of the dimers is composed of iodinated units, and the other is not.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan.
Monolayer Janus transition-metal dichalcogenides possess Ising- and Rashba-type spin-orbit-couplings (SOC), leading to intriguing spin splitting effects at K and K', and around Γ points across the wide energy range. Using first-principles calculations, we unveil these SOC characteristics in metallic Janus NbSSe and demonstrate its potential for optically controlled spin current generation. On the basis of the symmetry of the system, we show that different linear polarized light can selectively drive spin currents of distinct spin components.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
This study employs high-level calculation methods to explore the structural, electronic, and spectroscopic properties of the previously uncharacterized diatomic cation NaP. Detailed investigations focus on the manifold of low-lying Λ-S electronic states correlated with both Na + P and Na + P dissociation limits. The spin-orbit coupling effects are systematically evaluated, revealing the splitting of these states into distinct Ω components.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2025
Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France.
Discovering an efficient spintronic semiconductor workhorse with dual host capabilities as a channel and spin valve barrier remains one of the most elusive endeavors toward the development of spin-logic circuits. Graphene paved the way for two-dimensional (2D) materials, yet engineering a controlled band gap in it remains a challenge. Black phosphorus (BP) was recently unveiled as a potential candidate in the realm of 2D semiconductors, with carrier mobilities among the largest reported for a 2D material and a low spin-orbit coupling reminiscent of graphene.
View Article and Find Full Text PDF