Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The performance of electrochemical biosensors is severely compromised by biofouling in complex biofluids, underscoring the necessity to explore high-performance antifouling materials to construct robust nonfouling electrochemical biosensors. Here, the antifouling zwitterionic peptide CPPPP(D-Dap)(D-Dap)(D-Dap)(D-Dap) (CP(DDap)) was designed by adjusting the distance between the adjacent amino and carboxyl groups of the peptide, and it was further employed to fabricate antifouling electrochemical biosensors. Compared with traditional zwitterionic peptides, CP(DDap) exhibited not only superhydrophilicity but also higher structural rigidity and a smaller dipole moment, enabling it to achieve superior antifouling performance in complex biological media, while its unnatural characteristics endowed it with robust stability against hydrolysis by natural proteinase in biofluids. The CP(DDap)-based biosensor demonstrated high sensitivity for cortisol detection in serum with a remarkably low detection limit of 3.5 pg·mL, and it displayed superior antifouling performance in real serum over 3 weeks. Notably, the assay results obtained by this biosensor in a series of clinical samples were consistent with those obtained using a commercial cortisol assay kit. The strategy of adjusting amino-carboxyl spacing in zwitterionic peptides explored in this study provides a new approach for designing highly efficient antifouling materials, thereby advancing the development of robust biosensors and bioelectronics tailored for practical applications in complex biofluids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.5c03610 | DOI Listing |