98%
921
2 minutes
20
This study focuses on a multifunctional fluorescence probe JFT based on the FRET (Fluorescence Resonance Energy Transfer) and TICT (Twisted Intramolecular Charge Transfer) mechanism. JFT combines an electron donor and an acceptor, enabling it to detect sulfite and monitor intracellular viscosity. When reacting with sulfite, its electronic structure changes, turning off FRET and altering fluorescence wavelength and intensity. In different viscosity environments, the rotation of carbon-carbon bonds in the electron acceptor structure of JFT varies, affecting non-radiative transition pathways and fluorescence intensity. Theoretical calculations based on TDDFT reveal the electron distribution changes before and after the reaction with sulfite species, consistent with experimental phenomena. These findings deepen the understanding of the FRET mechanism of fluorescence probes and offer theoretical guidance for the design of more efficient fluorescence probes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12325367 | PMC |
http://dx.doi.org/10.3389/fchem.2025.1642191 | DOI Listing |
ACS Macro Lett
September 2025
Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Sulfone bonding is an emerging dipole-dipole interaction between sulfone groups. Herein, sulfone bonding is used for the first time for engineering tough hydrogels. Sulfone-bond-toughened hydrogels are prepared by copolymerizing acrylamide with a sulfone-functionalized monomer.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti, 85, Bologna 40129, Italy.
Donor-acceptor-donor (D-A-D) thiophene-based compounds, characterized by thiophene as a donor unit and benzothiadiazole (Bz) as an acceptor, represent an emerging class of theranostic agents for imaging and photodynamic therapy. Here, we expand this class of molecules by strategically varying the position of the electron-accepting unit within the oligothiophene (OT) backbone structure, realizing a series of different push-pull architectures (A-D, D-A-D, and D-A). This rational design allows for precise modulation of key photophysical parameters, including absorption and emission spectra, molar absorption coefficient, charge separation, and frontier molecular orbitals.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qing
Silk fibroin (SF)-based flexible electronic/photonic materials have gained great attention in wearable devices and soft sensors. However, it remains challenging to understand the molecular interaction mechanisms and subsequently fabricate SF-based flexible materials that exhibit fluorescence, humidity sensitivity, and conductivity properties. In this study, by incorporating lanthanide europium ion (Eu), the design and fabrication of a flexible, fluorescent, and conductive SF membrane was proposed.
View Article and Find Full Text PDFAtherosclerosis (AS) is a significant contributor to cardiovascular events. Recent studies have demonstrated that ferroptosis of foam cells is a significant driver of AS. Nevertheless, insights into the precise antiferroptosis therapies remain limited.
View Article and Find Full Text PDFBiomed Eng Lett
September 2025
Department of Electrical & Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea.
Purpose: This study investigates the antibacterial and anticancer activity of previously reported iron oxide (FeO)-based nanoparticles (NPs) conjugated with chlorin e6 and folic acid (FCF) in photodynamic therapy (PDT) using a human bladder cancer (BC) (T-24) cell line and three bacterial strains.
Method: To investigate the potential applicability of the synthesized NPs as therapeutic agents for image-based photodynamic BC therapy, their photodynamic anticancer activity was analyzed and the mechanisms of cell death in T-24 cells treated with these NPs were assessed qualitatively and quantitatively through atomic absorption spectroscopy, fluorescence imaging, and transmission electron microscopy.
Results: The effective localization of FCF NPs in T-24 cells were confirmed, validating their excellent cellular fluorescence and magnetic resonance imaging capabilities.