Crystal structure of the folded domains of Xrs2 from Saccharomyces cerevisiae.

Acta Crystallogr F Struct Biol Commun

Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The MRE11-RAD50-NBS1/Xrs2 (MRN/X) protein complex acts as a first responder in DNA double-strand break repair and telomere-length maintenance, yet the structural architecture of the yeast ortholog Xrs2 has remained unresolved. In this study, we present the first structure of the folded N-terminal region of Xrs2 from Saccharomyces cerevisiae, resolved at 2.38 Å using X-ray crystallography. Like the previously determined crystal structures of Schizosaccharomyces pombe Nbs1, the folded structure of S. cerevisiae Xrs2 adopts an extended three-domain organization at its N-terminus. Electrostatic analysis reveals two distinct charged patches: a positively charged patch on the FHA domain and a negatively charged patch in the cleft between the FHA and BRCT1 domains. This charge segregation is likely to play a role in mediating interactions with various ligands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400192PMC
http://dx.doi.org/10.1107/S2053230X25006867DOI Listing

Publication Analysis

Top Keywords

structure folded
8
xrs2 saccharomyces
8
saccharomyces cerevisiae
8
charged patch
8
crystal structure
4
folded domains
4
xrs2
4
domains xrs2
4
cerevisiae mre11-rad50-nbs1/xrs2
4
mre11-rad50-nbs1/xrs2 mrn/x
4

Similar Publications

Background: Phthalates are compounds used as plasticizers to increase the flexibility of plastics and are considered endocrine disruptors. Some studies suggest that the origin of prostate cancer (PCa) may be associated with disturbances during embryo-fetal development. Previous data showed that perinatal exposure to the same phthalate mixture (PM) used here increased the incidence of adenocarcinomas in the prostates of aged rats.

View Article and Find Full Text PDF

Structural Dynamics of Dengue Virus UTRs and Their Cyclization.

Biophys J

September 2025

Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, Alberta, Canada; Department of Microbiology, Immunology

The dengue virus (DENV) poses a significant threat to human health, accounting for approximately 400 million infections each year. Its genome features a circular structure that facilitates replication through long-range RNA-RNA interactions, utilizing cyclization sequences located in the untranslated regions (UTRs). To gain new insights into the organization of the DENV genome, we purified the 5' and 3' UTRs of DENV in vitro and examined their structural and binding properties using various biophysical techniques combined with computational methods.

View Article and Find Full Text PDF

Cryo-EM Study and In Vivo Chemical Mapping of the Methanosarcina acetivorans Ribosome and Its Dimerization via a Repurposed Enzyme and Translation Factor.

J Biol Chem

September 2025

Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802; Center for Structural Biology, Penn State University, University Park, PA 16802; Center for RNA Molecular Biology, Penn State University, University Park, PA 16802. Electronic address:

Despite the overall conservation of ribosomes across all domains of life, differences in their 3D architecture, rRNA sequences, ribosomal protein composition, and translation factor requirements reflect lineage-specific adaptations to environmental niches. In the domain Archaea, structural studies have primarily focused on non-methanogenic thermophiles and halophiles, leaving it unclear whether these represent the broader archaeal domain. Here, we report the cryo-electron microscopy (cryo-EM) structure of the ribosome from Methanosarcina acetivorans, a previously unreported high-resolution structure from a model mesophilic methanogenic archaeon.

View Article and Find Full Text PDF

Significant enhancement of photoproduced reactive intermediates in liquid-like region in frozen surface water for micropollutant degradation.

Water Res

September 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China. Electronic address:

Freezing enhancing the photochemistry of dissolved organic matter (DOM), yet the mechanism of reactive intermediate (RIs) generation influenced by DOM property and structure remain elusive. Here, we demonstrate that freezing induces exceptional amplification of RIs, with steady-state concentrations in ice (-10 °C) surpassing aqueous solutions by 5-41 times. Laser scanning confocal microscopy first visualized cryo-concentration of DOM and RIs in liquid-like regions (LLR).

View Article and Find Full Text PDF

Molecular Dynamics Simulation of the Interaction of Lipidated Structurally Nano Engineered Antimicrobial Peptide Polymers with Bacterial Cell Membrane.

J Phys Chem B

September 2025

Soft Matter Informatics Research Group, Department of Mechanical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Parkville, Victoria 3010, Australia.

The rapid emergence of multidrug-resistant (MDR) bacteria demands development of novel and effective antimicrobial agents. Structurally nanoengineered antimicrobial peptide polymers (SNAPPs), characterized by their unique star-shaped architecture and potent multivalent interactions, represent a promising solution. This study leverages molecular dynamics simulations to investigate the impact of lipidation on SNAPPs' structural stability, membrane interactions, and antibacterial efficacy.

View Article and Find Full Text PDF