Solvated ion transport in hierarchical tremella-like ionic membranes for low-power and high-sensitivity ethanol sensing.

Mater Horiz

Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biological olfactory perception relies on ionic transport, offering a promising alternative to conventional gas sensors that depend on electronic signal transmission, which often suffer from limitations such as limited sensitivity, high power consumption, and susceptibility to moisture. Inspired by biological olfactory ion channels, nanochannel-based ionic membranes incorporating 2D materials and ionic liquids have been developed. Through functional modifications, these membranes exhibit unique tremella-like structures that optimize gas diffusion pathways and provide effective gas interaction sites. The developed membranes demonstrate exceptional performance, including a low detection limit of 189 ppb, a remarkable sensitivity of 2.02% ppm across 5-500 ppm, specific selectivity to ethanol, stable reversibility over 100 cycles, and ultralow power consumption of only 0.28 μW. Experimental and simulation results confirm that the enhanced sensing performance stems from solvated ion transport within nanoconfined channels. Notably, the membranes maintain detection efficiency under varying humidity conditions, demonstrating practical applicability in both food quality assessment (30-40% RH) and intoxicated driving monitoring (80-90% RH). It is envisioned that the deepened understanding of solvated ion transport within nanoconfined channels will advance the development of bioinspired olfactory perception and integrated sensing systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5mh01249jDOI Listing

Publication Analysis

Top Keywords

solvated ion
12
ion transport
12
ionic membranes
8
biological olfactory
8
olfactory perception
8
power consumption
8
transport nanoconfined
8
nanoconfined channels
8
membranes
5
transport
4

Similar Publications

Ultra-High Zinc Utilization Enabled by MXene Anode for Flexible Dual-Plating Zn-Br Microbatteries.

J Phys Chem Lett

September 2025

College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China.

Aqueous zinc-ion microbatteries exhibit promising prospects for wearable devices due to their high safety and cost-effectiveness but face challenges such as low energy density and short cycle life. To address these challenges, a dual-plating flexible Zn-Br microbattery was developed using freestanding MXene films as a zinc metal free anode. The MXene anode retains no redundant Zn, as Zn from the electrolyte undergoes deposition/stripping reactions on its substrate, thereby eliminating the necessity for excess zinc.

View Article and Find Full Text PDF

Narrow electrochemical windows and high reactivity of aqueous solutions remain critical bottlenecks for the practical application of aqueous batteries. However, the mechanisms for tuning microscopic reactivity of HO molecules in aqueous electrolytes remain elusive. This study employs six ether molecules with distinct structures and solvation powers to regulate the microstructure of aqueous solutions.

View Article and Find Full Text PDF

Photoelectron angular distributions are reported for a series of aqueous potassium carboxylate solutions, ranging from bulk-solvated to strongly surface-active species. The quantitative information determined from this work demonstrates how the measured photoelectron angular distributions are influenced by the ions' increasing propensity for the surface in aqueous solutions. Our study provides insight into the relative depth and location of the carboxylate functional group, which is valuable for investigating the adsorption of organic molecules at liquid-vapor interfaces.

View Article and Find Full Text PDF

Thermopower regulation of thermocells electrolyte engineering: progress and prospects.

Chem Commun (Camb)

September 2025

Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.

Thermocells (TECs) represent a promising technology for sustainable low-grade waste heat (<100 °C) harvesting, offering distinct advantages such as scalability, structural versatility, and high thermopower. However, their practical applications are still hindered by low energy conversion efficiency and stability issues. In recent studies, electrolyte engineering has been highlighted as a critical strategy to enhance their thermopower by regulating the solvation structure and redox ion concentration gradient, thereby improving conversion efficiency.

View Article and Find Full Text PDF

Single-Molecule Dual-Anchor Design Enables Extreme-Condition Lithium Metal Batteries Through Solvation Reconstruction and Cathode Polymerization.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, P.R. China.

Lithium metal batteries (LMBs) have emerged as the most promising candidate for next-generation high-energy-density energy storage systems. However, their practical implementation is hindered by the inability of conventional carbonate electrolytes to simultaneously stabilize the lithium metal anode and LiNiCoMnO (NCM811) cathode interfaces, particularly under extreme operating conditions. Herein, we present a transformative molecular design using 3,5-difluorophenylboronic acid neopentyl glycol ester (DNE), which uniquely integrates dual interfacial stabilization mechanisms in a single molecule.

View Article and Find Full Text PDF