Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pod numbers are important for assessing soybean yield. How to simplify the traditional manual process and determine the pod number phenotype of soybean maturity more quickly and accurately is an urgent challenge for breeders. With the development of smart agriculture, numerous scientists have explored the phenotypic information related to soybean pod number and proposed corresponding methods. However, these methods mainly focus on the total number of pods, ignoring the differences between different pod types and do not consider the time-consuming and labor-intensive problem of picking pods from the whole plant. In this study, a deep learning approach was used to directly detect the number of different types of pods on non-disassembled plants at the maturity stage of soybean. Subsequently, the number of pods wascorrected by means of a metric learning method, thereby improving the accuracy of counting different types of pods. After 200 epochs, the recognition results of various object detection algorithms were compared to obtain the optimal model. Among the algorithms, YOLOX exhibited the highest mean average precision (mAP) of 83.43% in accurately determining the counts of diverse pod categories within soybean plants. By improving the Siamese Network in metric learning, the optimal Siamese Network model was obtained. SE-ResNet50 was used as the feature extraction network, and its accuracy on the test set reached 93.7%. Through the Siamese Network model, the results of object detection were further corrected and counted. The correlation coefficients between the number of one-seed pods, the number of two-seed pods, the number of three-seed pods, the number of four-seed pods and the total number of pods extracted by the algorithm and the manual measurement results were 92.62%, 95.17%, 96.90%, 94.93%, 96.64%,respectively. Compared with the object detection algorithm, the recognition of soybean mature pods was greatly improved, evolving into a high-throughput and universally applicable method. The described results show that the proposed method is a robust measurement and counting algorithm, which can reduce labor intensity, improve efficiency and accelerate the process of soybean breeding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12319039PMC
http://dx.doi.org/10.3389/fpls.2025.1583526DOI Listing

Publication Analysis

Top Keywords

metric learning
12
number pods
12
object detection
12
siamese network
12
pods number
12
pods
11
number
10
deep learning
8
learning approach
8
soybean
8

Similar Publications

Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).

View Article and Find Full Text PDF

Background: Falls are a major cause of injury and death among the elderly, highlighting the need for effective and real-time detection systems. Embedded Internet of Health Things (IoHT) technologies integrating sensors, microcontrollers, and communication modules offer continuous monitoring and rapid response. However, the research landscape remains fragmented, and no comprehensive bibliometric review has been conducted.

View Article and Find Full Text PDF

Application of anesthetic chemicals in aquaculture is important to minimize stress under normal operations such as handling, transport, and artificial breeding. In the past decade, the preference for natural anesthetics over synthetic ones has increased due to welfare issues regarding fish welfare and food safety. This study investigates the anesthetic efficacy of nutmeg oil () in three freshwater fish species- (Common carp), (Danube sturgeon), and (Rainbow trout)-by modeling behavioral (Induction and recovery times) and hematological responses using artificial neural networks (ANNs).

View Article and Find Full Text PDF

OpenML is an open-source platform that democratizes machine-learning evaluation by enabling anyone to share datasets in uniform standards, define precise machine-learning tasks, and automatically share detailed workflows and model evaluations. More than just a platform, OpenML fosters a collaborative ecosystem where scientists create new tools, launch initiatives, and establish standards to advance machine learning. Over the past decade, OpenML has inspired over 1,500 publications across diverse fields, from scientists releasing new datasets and benchmarking new models to educators teaching reproducible science.

View Article and Find Full Text PDF

ASReview LAB v.2: Open-source text screening with multiple agents and a crowd of experts.

Patterns (N Y)

July 2025

Department of Methodology and Statistics, Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, the Netherlands.

ASReview LAB v.2 introduces an advancement in AI-assisted systematic reviewing by enabling collaborative screening with multiple experts ("a crowd of oracles") using a shared AI model. The platform supports multiple AI agents within the same project, allowing users to switch between fast general-purpose models and domain-specific, semantic, or multilingual transformer models.

View Article and Find Full Text PDF