98%
921
2 minutes
20
This study investigated whether the various beneficial properties of flowable composite resin could be maintained upon adding strontium-modified phosphate-based glass (Sr-PBG) as an antibacterial agent. The experimental composite resin groups contained 1, 3, 5, or 10 wt% Sr-PBG. The mechanical, depth of cure, ion release, color analysis, surface gloss, antibacterial, and biocompatibility properties of the experimental groups were compared to those of the control group (100% resin). All experiments were performed before and after thermocycling to investigate the effects of thermal aging. Data were analyzed using one-way analysis of variance and Tukey's tests (p < 0.05). All mechanical properties for the experimental groups (e.g., flexural strength, elastic modulus, and microhardness) were significantly lower than those of the control group (p < 0.05). For Sr-PBG concentrations ≤ 5 wt%, the mechanical parameters were within the acceptable ranges set by ISO standards. Significant color differences (ΔE) were observed between the control and experimental groups, with the 10 wt% Sr-PBG sample showing clinically unacceptable levels. The release of Sr, P, and Ca ions increased with the Sr-PBG content before thermocycling. After thermocycling, Sr and Ca release decreased, whereas P release increased sharply at concentrations above 5 wt%. Antibacterial tests confirmed that higher Sr-PBG concentrations resulted in superior antibacterial efficacy against S. mutans. The Sr-PBG-containing composites were not cytotoxic to human cells. The findings suggest that 5 wt% Sr-PBG is the optimal concentration for improving the antibacterial properties of dental restorative materials without compromising their clinical performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12322195 | PMC |
http://dx.doi.org/10.1038/s41598-025-13342-3 | DOI Listing |
Braz Oral Res
September 2025
Universidade Positivo, School of Health Sciences, Graduate Program in Dentistry, Curitiba, PR, Brazil.
This study assessed the effect of saliva exposure on roughness (Ra) and Vickers hardness (VHN) of two direct restorative materials, enamel, and dentin adjacent to the restorations. Enamel and dentin cavities in molars (n = 10) were restored with a) bulk-fill resin composite (Tetric N-Flow Bulk Fill, BF) with the application of a universal adhesive (Tetric N-Bond Universal) and b) alkasite restorative material (Cention N, CN) with and without the application of a universal adhesive. After 24 h (baseline), surface roughness and hardness of the restorative material and dental tissues were assessed at 100 μm from the tooth/restoration interface.
View Article and Find Full Text PDFBraz Oral Res
September 2025
Pontifícia Universidade Católica de Minas Gerais - PUC-Minas, Institute of Biological and Health Sciences, Dentistry Department, Belo Horizonte, MG, Brasil.
The contamination of dental curing light tips was evaluated before and after treatment and after their use and disinfection. The influence of a plastic protective barrier over the flexural strength and the modulus of elasticity of resin composites were also analyzed. Microbiological sampling was conducted at initial contamination (T0), in Log 10 CFU/4 mL; after dental treatment (T1); and after disinfection with 70% ethanol (v/v) (T2).
View Article and Find Full Text PDFRegen Biomater
August 2025
College of Textiles & Clothing, Institute of Functional Textiles and Advanced Materials, Qingdao 266071, China.
Bacterial infection in the injured skin may threaten the wound repair and skin regeneration owing to aggravated inflammation. The multifunctional dressings with persistent antibacterial activity and improved anti-inflammatory capability are urgently required. Herein, a type of heterogeneous zinc/catechol-derived resin microspheres (Zn/CFRs) composed of zinc ions (Zn) and zinc oxide (ZnO) nanoparticles was developed to impart the methacrylamide chitosan (CSMA)-oxidized hyaluronic acid (OHA) hydrogel with a persistent Zn release behavior.
View Article and Find Full Text PDFAppl Radiat Isot
September 2025
Kahramanmaraş İstiklal University, Department of Energy Systems Engineering, Kahramanmaraş, Türkiye.
The rapid advancement of three-dimensional (3D) printing technologies has significantly expanded their potential applications such as sensors and detector technology. In this study, the gamma-ray shielding performance of ulexite-doped composite resins fabricated via Digital Light Processing (DLP) 3D printing was experimentally investigated to evaluate radiation attenuation capacity. Composite resins containing different ulexite loadings (0, 1, 3, and 5 wt%) were exposed to gamma rays at energies of 356, 662, 1173, and 1333 keV to evaluate their attenuation characteristics.
View Article and Find Full Text PDFOdontology
September 2025
Department of Biomaterials, Hamidiye Institute of Health Sciences, University of Health Sciences Turkey, Istanbul, Turkey.
This study evaluates the cytotoxicity, apoptosis, and expression of stress-related genes (TP53 and NF-κB) in response to gingiva-colored indirect composite resins used for veneering tooth or implant-supported prostheses or characterization of denture bases. A total of 120 disc-shaped specimens (2 mm thick, 10 mm diameter) gingiva-colored indirect composite resin specimens (Group A: Anaxgum-Anaxdent, Group B: Crealing Paste Gum-Bredent, Group G: Gradia Gum-GC, Group N: SR Nexco GUM-Ivoclar Vivadent) were prepared and divided into four groups (n = 10 per group). Surface wettability was assessed using water contact angle (WCA) measurements.
View Article and Find Full Text PDF