A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Solid solvation structure design improves all-solid-state organic batteries. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Organic electrode materials offer a versatile, sustainable approach for next-generation lithium-ion batteries but are limited by low working voltages and poor cycling stability. Here we report a solid-solvation-structure design strategy to improve both the voltage and stability of organic electrode materials in all-solid-state batteries. As a proof of concept, we incorporate halide electrolytes as solid solutes and tetrachloro-o-benzoquinone as a solid solvent to form homogeneous solid cathode solutions. Systematic optimization of the inner solvation configuration enables tetrachloro-o-benzoquinone to achieve a high working voltage (3.6 V vs. Li/Li) at room temperature within an asymmetric solid solvation sheath. Moreover, the equilibrium redox pathway and electrostatically driven self-healing interfaces revealed rapid redox kinetics and stable performance over 7,500 cycles in all-solid-state batteries under low stack pressures. This work demonstrates that organic electrode materials can serve as viable, durable and cost-effective alternatives to transition metal oxides in all-solid-state batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41557-025-01866-0DOI Listing

Publication Analysis

Top Keywords

organic electrode
12
electrode materials
12
all-solid-state batteries
12
solid solvation
8
solid
5
batteries
5
solvation structure
4
structure design
4
design improves
4
all-solid-state
4

Similar Publications