Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Data synthesis methods have shown promising results in general deepfake detection tasks. This is attributed to the inherent blending process in deepfake creation, which leaves behind distinct synthetic artifacts. However, the existence of content-irrelevant artifacts has not been explicitly explored in the deepfake synthesis. Unveiling content-irrelevant synthetic artifacts helps uncover general deepfake features and enhances the generalization capability of detection models. To capture the content-irrelevant synthetic artifacts, we propose a learning framework incorporating a synthesis process for diverse contents and specially designed learning strategies that encourage using content-irrelevant forgery information across deepfake images. From the data perspective, we disentangle the blending operation from face data and propose a universal synthetic module that generates images from various classes with common synthetic artifacts. From the learning perspective, a domain-adaptive learning head is introduced to filter out forgery-irrelevant features and optimize the decision on deepfake face detection. To efficiently learn the content-irrelevant artifacts for detection with a large sampling space, we propose a batch-wise sample selection strategy that actively mines the hard samples based on their effect on the adaptive decision boundary. Extensive cross-dataset experiments show that our method achieves state-of-the-art performance in general deepfake detection.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2025.3592576DOI Listing

Publication Analysis

Top Keywords

synthetic artifacts
20
content-irrelevant synthetic
12
deepfake detection
12
general deepfake
12
unveiling content-irrelevant
8
deepfake
8
content-irrelevant artifacts
8
artifacts
7
content-irrelevant
6
synthetic
6

Similar Publications

Lung nodule synthesis guided by customized multi-confidence masks.

Biomed Eng Lett

September 2025

Department of Radiology, Guizhou International Science and Technology Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, Guiyang, Guizhou China.

The generated lung nodule data plays an indispensable role in the development of intelligent assisted diagnosis of lung cancer. Existing generative models, primarily based on Generative Adversarial Networks (GANs) and Denoising Diffusion Probabilistic Models (DDPM), have demonstrated effectiveness but also come with certain limitations: GANs often produce artifacts and unnatural boundaries, and due to dataset limitations, they struggle with irregular nodules. While DDPMs are capable of generating a diverse range of nodules, their inherent randomness and lack of control limit their applicability in tasks such as segmentation.

View Article and Find Full Text PDF

Enhancing reconstruction-based out-of-distribution detection in brain MRI with model and metric ensembles.

Comput Methods Programs Biomed

September 2025

Eindhoven University of Technology, Department of Biomedical Engineering, Medical Image Analysis Group, Eindhoven, The Netherlands. Electronic address:

Background And Objective: Out-of-distribution (OOD) detection is crucial for safely deploying automated medical image analysis systems, as abnormal patterns in images could hamper their performance. However, OOD detection in medical imaging remains an open challenge. In this study, we aim to optimize a reconstruction-based autoencoder specifically for OOD detection.

View Article and Find Full Text PDF

Direct myelin imaging with inversion-recovery ultrashort-echo-time (IR-UTE) is highly motion-sensitive, yet extra hardware or longer scans are impractical. We evaluated whether a superior-inferior (SI) self-navigator with bit-reversed spoke-angles mitigates motion artifacts without extending acquisition. Dual-echo IR-UTE was implemented at 3T.

View Article and Find Full Text PDF

Introduction: The transition from proprietary, paper-based care transition records (CTRs) to standardized digital formats like HL7 FHIR remains a significant challenge for healthcare institutions. Variability in document layouts, coupled with slow adoption of new interoperability standards, complicates efforts to digitize patient records while preserving data integrity and privacy.

Methods: This study presents a machine learning-based pipeline for automated information extraction from scanned CTRs.

View Article and Find Full Text PDF

Motion blur is a complex phenomenon caused by the relative movement between an observed object and an imaging sensor during the exposure time, resulting in degradation in the image quality. Deep-learning-based methods, particularly convolutional neural networks (CNNs), have shown promise in motion deblurring. However, the small kernel sizes of CNNs limit their ability to achieve optimal performance.

View Article and Find Full Text PDF