98%
921
2 minutes
20
Microbial community play a fundamental role in primary succession of tailings ecosystems. However, the influence of heavy metal pollution on microbial interactions and assembly dynamics during this process remains poorly understood. In this study, we investigated bacterial and fungal communities in tailing soil and biological soil crusts (BSCs) undergoing primary succession under varying heavy metal pollution. By integrating microbial community profiling with measurements of soil nutrients and heavy metal concentrations, we aimed to elucidate how pollution levels shape microbial composition, co-occurrence networks, and assembly processes. Our results revealed clear differences in soil physicochemical properties, microbial diversity, community structure, and ecological interactions between low and high pollution conditions. Under high contamination, dominated the bacterial communities, while and were representative among fungi. Microbial diversity decreased with increasing pollution, accompanied by simplified co-occurrence networks and increased modularity. In highly polluted environments, both bacterial and fungal communities exhibited stronger correlations with environmental factors. Interestingly, bacterial communities were more strongly associated with soil nutrient parameters, whereas fungal communities responded more closely to heavy metal concentrations. Community assembly analysis further showed a shift toward deterministic processes in bacterial communities under high pollution, while fungal assembly remained largely stochastic. These findings highlight the differential responses of bacterial and fungal communities to heavy metal stress and underscore the critical role of pollution in shaping microbial succession in tailing ecosystems. This study provides important insights into microbial ecology under environmental stress and may inform strategies for the bioremediation and management of contaminated mine lands.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313675 | PMC |
http://dx.doi.org/10.3389/fmicb.2025.1566627 | DOI Listing |
Mikrochim Acta
September 2025
Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
An Ag-functionalized structural color hydrogel (Ag-SCH) sensor is constructed for colorimetric detection of glutathione (GSH). The hydrogel is prepared by using the coordination of Ag and 1-vinylimidazole (1-VI) as cross-linking network. GSH acts as a competitive ligand to break the coordination between Ag and 1-VI, leading to the expansion and structural color change of the hydrogel.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Faculty of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China.
A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
School of Geological Survey, China University of Geosciences, Wuhan, 430074, China.
Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).
View Article and Find Full Text PDFBioresour Technol
September 2025
School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China; Institute o
Elevated expense of chemical media spurs a shift to non-chemical media in microalgal cultivation, while ensuring the safety of the resulting powder poses a challenge. No previous studies have evaluated the safety and application of Spirulina subsalsa powder cultivated in monosodium glutamate wastewater (MSGW) and seawater. In this study, an analysis of basic nutritional components in Spirulina subsalsa powder indicated that this algal powder had high protein content, low lipid content and rich mineral content.
View Article and Find Full Text PDFNeurotoxicology
September 2025
Department of Otolaryngology Head and Neck Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China. Electronic address:
Gadolinium-based contrast agents (GBCAs) are widely used in systemic magnetic resonance imaging (MRI) and can be employed in otology to evaluate endolymphatic hydrops in patients with Ménière's disease. Given the heavy metal properties of gadolinium and its tendency to deposit in tissues, it is essential to assess its ototoxic risk. We evaluated the ototoxicity of gadodiamide using in vitro and in vivo models.
View Article and Find Full Text PDF