Orchard variable-rate spraying method integrating GNSS and wind-excited audio-conducted leaf area density.

Front Plant Sci

Key Laboratory of Modern Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Nanjing, China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Conventional air-assisted sprayers used in orchards often suffer from excessive pesticide waste, high residue levels, and uneven droplet distribution on fruit tree canopies. Precision spraying technologies have emerged to address these limitations by enabling dynamic regulation of spray parameters according to canopy characteristics. Among these, leaf area density is a key indicator for describing canopy sparseness. However, accurate and automated measurement of canopy leaf area density remains challenging due to leaf shading effects. As a result, few fully functional variable-rate spraying systems have been developed based on this parameter.

Methods: This study presents a variable-rate spraying method that integrates global navigation satellite system (GNSS) positioning with wind-excited audio-conducted estimation of canopy leaf area density. A self-propelled orchard spraying platform was developed to acquire real-time GNSS positioning and audio-conducted canopy leaf area density data. Based on this, a method was established for generating prescription maps that integrate spatial positioning and canopy density information. A variable-rate spray control model and algorithm were then constructed to regulate spray flow according to the spatial distribution of leaf area density across the orchard.

Results: Field experiments demonstrated that the system achieved a mean relative error of only 5.52% in spray flow rate regulation. Compared with conventional constant-rate spraying, the variable-rate mode reduced the longitudinal coefficient of variation (CV) of droplet deposition by 55.75% on adaxial leaf surfaces and by 33.22% on abaxial surfaces, with a maximum reduction of 62.32% in transverse CV. Ground runoff of spray solution was reduced by 62.29%, and droplet deposition density on leaf surfaces exceeded 25 droplets/cm², meeting the standard for low-volume insecticide application.

Discussion: The integration of GNSS and wind-excited audio sensing for real-time canopy density assessment enables more precise and efficient pesticide application in orchards. This system significantly improves droplet deposition uniformity while reducing environmental losses, offering a promising technical solution for the development of intelligent and sustainable plant protection equipment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313613PMC
http://dx.doi.org/10.3389/fpls.2025.1621080DOI Listing

Publication Analysis

Top Keywords

leaf area
24
area density
24
variable-rate spraying
12
canopy leaf
12
droplet deposition
12
leaf
9
density
9
spraying method
8
gnss wind-excited
8
wind-excited audio-conducted
8

Similar Publications

Volumetric modulated arc therapy (VMAT) for lung cancer involves complex multileaf collimator (MLC) motion, which increases sensitivity to interplay effects with tumour motion. Current dynamic conformal arc methods address this issue but may limit the achievable dose distribution optimisation compared with standard VMAT. This study examined the clinical utility of a VMAT technique with monitor unit limits (VMATliMU) to mimic conformal arc delivery and reduce interplay effects while maintaining plan quality.

View Article and Find Full Text PDF

Biosynthetic potential of the culturable foliar fungi associated with field-grown lettuce.

Appl Microbiol Biotechnol

September 2025

School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA.

Fungal endophytes and epiphytes associated with plant leaves can play important ecological roles through the production of specialized metabolites encoded by biosynthetic gene clusters (BGCs). However, their functional capacity, especially in crops like lettuce (Lactuca sativa L.), remains poorly understood.

View Article and Find Full Text PDF

Background And Aims: Trait-based approaches have advanced our understanding of plant strategies, yet they often focus on leaf-level traits, overlooking the functional roles of stem anatomy and twig characteristics. We investigated intraspecific trait variation in Salix flabellaris, an alpine dwarf shrub, along climatic gradients in the Himalayas. Our goal was to identify distinct axes of trait variation related to stem, twig, and leaf traits, assess their environmental drivers, and evaluate population-specific growth responses to recent climate change.

View Article and Find Full Text PDF

Exploring lactic acid bacteria diversity of hop plant by-products to develop a multi-strain starter culture to be used in hop-supplemented sourdough bread.

Food Res Int

November 2025

Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 43124 Parma, Italy; Institute of Biophysics, National Research Council (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy.

The hop plant is gaining interest in the food, pharmaceutical, and cosmetics industries due to its abundance of secondary metabolites. However, branches and leaves, despite their antioxidant potential, are typically discarded. To valorize these components as functional ingredients they were dried, milled into hop powder (HP), and used to enrich bread.

View Article and Find Full Text PDF

Background: Because of their ecological, aesthetic, and beneficial characteristics, native desert plants are highly significant. They can also be utilized in landscape architecture, particularly in environments with harsh conditions. The present study aims to evaluate the potential utilization of the wild desert plants Pancratium maritimum L.

View Article and Find Full Text PDF