Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Exosomes-nanoscale extracellular vesicles secreted by various cell types-play a crucial role in intercellular communication by delivering biologically active molecules, such as proteins, nucleic acids, and lipids. Due to their intrinsic biocompatibility, targeting capabilities, and stability, exosomes have emerged as promising vehicles for diagnostics and therapeutics in a wide range of diseases, including cancer, and neurodegenerative, cardiovascular, and autoimmune disorders. The ability to monitor exosome biodistribution and dynamics in vivo is pivotal to promoting their clinical translation. This review provides a comprehensive overview of the current visualization techniques employed for in vivo exosome imaging: optical imaging, magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), positron emission tomography (PET), and emerging modalities, such as photoacoustic imaging, ultrasound, and Raman-based approaches. The advantages, limitations, and representative applications of each imaging modality are critically discussed, with emphasis on labeling strategies that enhance tracking sensitivity and specificity. Optical imaging offers high sensitivity, but is limited by shallow tissue penetration, whereas MRI provides excellent spatial resolution, but suffers from low molecular sensitivity. Radionuclide-based imaging, such as PET and SPECT, enables highly sensitive, quantitative tracking, but presents challenges regarding radiotracer stability and safety. Emerging multimodal platforms and labeling innovations are highlighted for their potential to overcome current limitations. Future research directions include the development of non-invasive, highly sensitive, and clinically translatable imaging systems, as well as standardized protocols to ensure reproducibility. Advances in exosome imaging technologies will be instrumental to unlock the full diagnostic and therapeutic potential of exosomebased platforms in precision medicine. [BMB Reports 2025; 58(8): 340-349].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12402689PMC
http://dx.doi.org/10.5483/BMBRep.2025-0060DOI Listing

Publication Analysis

Top Keywords

exosome imaging
12
imaging
10
vivo exosome
8
visualization techniques
8
optical imaging
8
highly sensitive
8
imaging applications
4
applications diverse
4
diverse visualization
4
techniques exosomes-nanoscale
4

Similar Publications

Single-cell surface-enhanced Raman scattering (SERS) has emerged as a powerful tool for precision medicine owing to its label-free detection, ultrasensitivity, and unique molecular fingerprinting. Unlike conventional bulk analysis, it enables detailed characterization of cellular heterogeneity, with particular promise in circulating tumor cell (CTC) identification, tumor microenvironment (TME) metabolic profiling, subcellular imaging, and drug sensitivity assessment. Coupled with microfluidic droplet systems, SERS supports high-throughput single-cell analysis and multiparametric screening, while integration with complementary modalities such as fluorescence microscopy and mass spectrometry enhances temporal and spatial resolution for monitoring live cells.

View Article and Find Full Text PDF

Microglia regulate neuronal circuit plasticity. Disrupting their homeostatic function has detrimental effects on neuronal circuit health. Neuroinflammation contributes to the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD), with several microglial activation genes linked to increased risk for these conditions.

View Article and Find Full Text PDF

Potential diagnostic markers in Alzheimer's disease: current perspectives and future directions.

Neurodegener Dis Manag

September 2025

Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.

Alzheimer's disease (AD), the most common form of dementia, remains a leading neurodegenerative disorder that necessitates the development of diagnostic markers. While current cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers facilitate diagnostic accuracy, their invasive and pricey nature limits widespread application. Blood-based biomarkers, such as plasma Aβ42/40 and phosphorylated tau isoforms, are emerging as accessible alternatives.

View Article and Find Full Text PDF

Chaperone-mediated autophagy (CMA), a lysosome-dependent protein degradation pathway, plays a pivotal yet poorly understood role in cellular senescence-related degenerative diseases. Our study sheds light on a novel mechanism whereby UCHL1 plays a crucial role in mitigating nucleus pulposus cell (NPC) senescence and intervertebral disc degeneration (IVDD) by activating CMA to counteract autophagy-dependent ferroptosis. Through sequencing analysis of human samples, we identified UCHL1 as a potential factor influencing disc degeneration.

View Article and Find Full Text PDF

Background: The united airway diseases (UADs), exemplified by allergic rhinitis and asthma, cause significant morbidity. Although conventional pharmacotherapy provides symptomatic relief, recent evidence has indicated that cellular therapy, such as stem cell-derived exosomes, might offer therapeutic advantages throughout the entire respiratory tract.

Objectives: The present study intends to demonstrate the effect and explore the mechanism of a novel pharmaco-exosomal immunotherapy, i.

View Article and Find Full Text PDF