98%
921
2 minutes
20
Background: Prediction of protein-protein interactions (PPIs) is fundamental for identifying drug targets and understanding cellular processes. The rapid growth of PPI studies necessitates the development of efficient and accurate tools for automated prediction of PPIs. In recent years, several robust deep learning models have been developed for PPI prediction and have found widespread application in proteomics research. Despite these advancements, current computational tools still face limitations in modeling both the pairwise interactions and the hierarchical relationships between proteins.
Results: We present HI-PPI, a novel deep learning method that integrates hierarchical representation of PPI network and interaction-specific learning for protein-protein interaction prediction. HI-PPI extracts the hierarchical information by embedding structural and relational information into hyperbolic space. A gated interaction network is then employed to extract pairwise features for interaction prediction. Experiments on multiple benchmark datasets demonstrate that HI-PPI outperforms the state-of-the-art methods; HI-PPI improves Micro-F1 scores by 2.62%-7.09% over the second-best method. Moreover, HI-PPI offers explicit interpretability of the hierarchical organization within the PPI network. The distance between the origin and the hyperbolic embedding computed by HI-PPI naturally reflects the hierarchical level of proteins.
Conclusions: Overall, the proposed HI-PPI effectively addresses the limitations of existing PPI prediction methods. By leveraging the hierarchical structure of PPI network, HI-PPI significantly enhances the accuracy and robustness of PPI predictions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320375 | PMC |
http://dx.doi.org/10.1186/s12915-025-02359-9 | DOI Listing |
Funct Integr Genomics
September 2025
The First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China.
Ischemic stroke (IS) has high morbidity/mortality with limited treatments. This study screened core copper homeostasis-related genes in IS and validated their function as precise intervention targets. Human IS gene chip data were retrieved from GEO, and copper homeostasis genes from multiple databases.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.
Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.
Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.
Biochem Biophys Rep
December 2025
Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 112, Taiwan.
Purpose: This study aimed to conduct functional proteomics across breast cancer subtypes with bioinformatics analyses.
Methods: Candidate proteins were identified using nanoscale liquid chromatography with tandem mass spectrometry (NanoLC-MS/MS) from core needle biopsy samples of early stage (0-III) breast cancers, followed by external validation with public domain gene-expression datasets (TCGA TARGET GTEx and TCGA BRCA).
Results: Seventeen proteins demonstrated significantly differential expression and protein-protein interaction (PPI) found the strong networks including COL2A1, COL11A1, COL6A1, COL6A2, THBS1 and LUM.
Biochem Biophys Rep
June 2025
Department of Public Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
Background: Synaptic dysfunction and synapse loss occur in Alzheimer's disease (AD). The current study aimed to identify synaptic-related genes with diagnostic potential for AD.
Methods: Differentially expressed genes (DEGs) were overlapped with phenotype-associated module selected through weighted gene co-expression network analysis (WGCNA), and synaptic-related genes.
Front Med (Lausanne)
August 2025
State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China.
Background: Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease. However, the biological role of mitochondrial metabolism (MM) in COPD remains poorly understood. This study aimed to explore the underlying mechanisms of MM in COPD using bioinformatics methods.
View Article and Find Full Text PDF